2,182 research outputs found
Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments
The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home environments can help therapists ascertain if exercises have been performed as prescribed. Whilst wearable devices have been shown to provide advantages such as high accuracy and precision during monitoring activities, disadvantages such as limited battery life and users’ inability to remember to charge and wear the devices are often the challenges for their usage. In addition, video cameras, which are notable for high frame rates and granularity, are not privacy-friendly. Therefore, this paper proposes the use and fusion of privacy-friendly and Unobtrusive Sensing Solutions (USSs) for data collection and processing during SPAREs in home environments. The present work aims to monitor SPAREs such as dorsiflexion, plantarflexion, inversion, and eversion using radar and thermal sensors. The main contributions of this paper include (i) privacy-friendly monitoring of SPAREs in a home environment, (ii) fusion of SPAREs data from homogeneous and heterogeneous USSs, and (iii) analysis and comparison of results from single, homogeneous, and heterogeneous USSs. Experimental results indicated the advantages of using heterogeneous USSs and data fusion. Cluster-based analysis of data gleaned from the sensors indicated an average classification accuracy of 96.9% with Neural Network, AdaBoost, and Support Vector Machine, amongst others
Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise
This is the author accepted manuscript. The final version is available from Public Library of Science (PLoS) via the DOI in this record.Data accessibility:
Data for primary analyses are included in S1 Data file.Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group – the birds-of-paradise – exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the trade-off between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit – the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness – functional overlap and interdependency – promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations
The flavor puzzle in multi-Higgs models
We reconsider the flavor problem in the models with two Higgs doublets. By
studying two generation toy models, we look for flavor basis independent
constraints on Yukawa couplings that will give us the mass hierarchy while
keeping all Yukawa couplings of the same order. We then generalize our findings
to the full three generation Standard Model. We find that we need two
constraints on the Yukawa couplings to generate the observed mass hierarchy,
and a slight tuning of Yukawa couplings of order 10%, much less than the
Standard Model. We briefly study how these constraints can be realized, and
show how flavor changing currents are under control for mixing in
the near-decoupling limit.Comment: 26 pages, typos are corrected, references are added, the final
versio
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
Bilinear R-parity violation with flavor symmetry
Bilinear R-parity violation (BRPV) provides the simplest intrinsically
supersymmetric neutrino mass generation scheme. While neutrino mixing
parameters can be probed in high energy accelerators, they are unfortunately
not predicted by the theory. Here we propose a model based on the discrete
flavor symmetry with a single R-parity violating parameter, leading to
(i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a
successful unification-like b-tau mass relation, and (ii) a correlation between
the lepton mixing angles and in agreement with
recent neutrino oscillation data, as well as a (nearly) massless neutrino,
leading to absence of neutrinoless double beta decay.Comment: 16 pages, 3 figures. Extended version, as published in JHE
Calbindin-D32k Is Localized to a Subpopulation of Neurons in the Nervous System of the Sea Cucumber Holothuria glaberrima (Echinodermata)
Members of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system. Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the sea cucumber Holothuria glaberrima (Selenka, 1867). Immunohistological experiments with antibodies made against rat calbindin 1, parvalbumin, and calbindin 2, showed that these antibodies labeled cells and fibers within the nervous system of H. glaberrima. Most of the cells and fibers were co-labeled with the neural-specific marker RN1, showing their neural specificity. These were distributed throughout all of the nervous structures, including the connective tissue plexi of the body wall and podia. Bioinformatics analyses of the possible antigen recognized by these markers showed that a calbindin 2-like protein present in the sea urchin Strongylocentrotus purpuratus, corresponded to the calbindin-D32k previously identified in other invertebrates. Western blots with anti-calbindin 1 and anti-parvalbumin showed that these markers recognized an antigen of approximately 32 kDa in homogenates of radial nerve cords of H. glaberrima and Lytechinus variegatus. Furthermore, immunoreactivity with anti-calbindin 1 and anti-parvalbumin was obtained to a fragment of calbindin-D32k of H. glaberrima. Our findings suggest that calbindin-D32k is present in invertebrates and its sequence is more similar to the vertebrate calbindin 2 than to calbindin 1. Thus, characterization of calbindin-D32k in echinoderms provides an important view of the evolution of this protein family and represents a valuable marker to study the nervous system of invertebrates
Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes
Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer
Temporal profiling of<i>Salmonella</i>transcriptional dynamics during macrophage infection using a comprehensive reporter library
AbstractThe transcriptome ofSalmonella entericaserovar Typhimurium (S. Tm) dynamically responds to the rapid environmental shifts intrinsic toS.Tm lifestyle, exemplified by entry into theSalmonella-containing vacuole (SCV) within macrophages. IntracellularS. Tm must respond to the acidity of the SCV, accumulation of reactive oxygen/nitrogen species, and fluctuations in nutrient availability. Despite thorough RNA-seq-based investigations, the precise transcriptional timing of the expression of many secretion systems, metabolic pathways, and virulence effectors involved in infection has yet to be elucidated. Here, we construct a comprehensive library of GFP-reporter strains representing ∼3,000 computationally identifiedS.Tm promoter regions to study the dynamics of transcriptional regulation. We quantified promoter activity duringin vitrogrowth in defined and complex media and throughout the timeline of intracellular infection of RAW 246.7 macrophages. Using bulk measurements and single-cell imaging, we uncovered condition-specific transcriptional regulation and population-level heterogeneity in the activity of virulence-related promoters, including SPI2 genes such asssaRandssaG. We discovered previously unidentified transcriptional activity from 234 genes, including ones with novel activity during infection that are associated with pathogenecity islands and are involved in metabolism and metal homeostasis. Our library and data sets should provide powerful resources for systems-level interrogation ofSalmonellatranscriptional dynamics.</jats:p
Computational Cancer Biology: An Evolutionary Perspective
ISSN:1553-734XISSN:1553-735
- …