56 research outputs found
Antibody Targeting of Cathepsin S Inhibits Angiogenesis and Synergistically Enhances Anti-VEGF
Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis
Genome-Wide Association Study Identifies First Locus Associated with Susceptibility to Cerebral Venous Thrombosis
Objective Cerebral venous thrombosis (CVT) is an uncommon form of stroke affecting mostly young individuals. Although genetic factors are thought to play a role in this cerebrovascular condition, its genetic etiology is not well understood. Methods A genome-wide association study was performed to identify genetic variants influencing susceptibility to CVT. A 2-stage genome-wide study was undertaken in 882 Europeans diagnosed with CVT and 1,205 ethnicity-matched control subjects divided into discovery and independent replication datasets. Results In the overall case-control cohort, we identified highly significant associations with 37 single nucleotide polymorphisms (SNPs) within the 9q34.2 region. The strongest association was with rs8176645 (combined p = 9.15 x 10(-24); odds ratio [OR] = 2.01, 95% confidence interval [CI] = 1.76-2.31). The discovery set findings were validated across an independent European cohort. Genetic risk score for this 9q34.2 region increases CVT risk by a pooled estimate OR = 2.65 (95% CI = 2.21-3.20, p = 2.00 x 10(-16)). SNPs within this region were in strong linkage disequilibrium (LD) with coding regions of the ABO gene. The ABO blood group was determined using allele combination of SNPs rs8176746 and rs8176645. Blood groups A, B, or AB, were at 2.85 times (95% CI = 2.32-3.52, p = 2.00 x 10(-16)) increased risk of CVT compared with individuals with blood group O. Interpretation We present the first chromosomal region to robustly associate with a genetic susceptibility to CVT. This region more than doubles the likelihood of CVT, a risk greater than any previously identified thrombophilia genetic risk marker. That the identified variant is in strong LD with the coding region of the ABO gene with differences in blood group prevalence provides important new insights into the pathophysiology of CVT. ANN NEUROL 2021Peer reviewe
Generic health literacy measurement instruments for children and adolescents:a systematic review of the literature
Background Health literacy is an important health promotion concern and recently children and adolescents have been the focus of increased academic attention. To assess the health literacy of this population, researchers have been focussing on developing instruments to measure their health literacy. Compared to the wider availability of instruments for adults, only a few tools are known for younger age groups. The objective of this study is to systematically review the field of generic child and adolescent health literacy measurement instruments that are currently available. Method A systematic literature search was undertaken in five databases (PubMed, CINAHL, PsycNET, ERIC, and FIS) on articles published between January 1990 and July 2015, addressing children and adolescents ?18 years old. Eligible articles were analysed, data was extracted, and synthesised according to review objectives. Results Fifteen generic health literacy measurement instruments for children and adolescents were identified. All, except two, are self-administered instruments. Seven are objective measures (performance-based tests), seven are subjective measures (self-reporting), and one uses a mixed-method measurement. Most instruments applied a broad and multidimensional understanding of health literacy. The instruments were developed in eight different countries, with most tools originating in the United States (n =?6). Among the instruments, 31 different components related to health literacy were identified. Accordingly, the studies exhibit a variety of implicit or explicit conceptual and operational definitions, and most instruments have been used in schools and other educational contexts. While the youngest age group studied was 7-year-old children within a parent-child study, there is only one instrument specifically designed for primary school children and none for early years. Conclusions Despite the reported paucity of health literacy research involving children and adolescents, an unexpected number of health literacy measurement studies in children?s populations was found. Most instruments tend to measure their own specific understanding of health literacy and not all provide sufficient conceptual information. To advance health literacy instruments, a much more standardised approach is necessary including improved reporting on the development and validation processes. Further research is required to improve health literacy instruments for children and adolescents and to provide knowledge to inform effective interventionspublishersversionPeer reviewe
Convergent genetic and expression data implicate immunity in Alzheimer's disease
Background
Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis.
Methods
The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain.
Results
ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05).
Conclusions
The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease
We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)
CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice.
Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases.Funded by a grant from the Wellcome Trust (Grant number: 104025/Z/14/Z), and by the NIHR Oxford Health Biomedical Research Centre
Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease
Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n=2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43-1.96); P=1.1 × 10 -10). We finally searched for association between SNPs within the FRMD4A locus and Aβ plasma concentrations in three independent non-demented populations (n=2579). We reported that polymorphisms were associated with plasma Aβ42/Aβ40 ratio (best signal, P=5.4 × 10 -7). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD
CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice
Neuroinflammation and microglial activation are significant processes in Alzheimer’s disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer’s disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer’s disease and other tau-mediated neurodegenerative diseases
Inflammatory biomarkers in Alzheimer's disease plasma
Introduction:Plasma biomarkers for Alzheimer’s disease (AD) diagnosis/stratification are a“Holy Grail” of AD research and intensively sought; however, there are no well-established plasmamarkers.Methods:A hypothesis-led plasma biomarker search was conducted in the context of internationalmulticenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL;259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed.Results:Ten analytes showed significant intergroup differences. Logistic regression identified five(FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD andCTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI(AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Twoanalytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71).Discussion:Plasma markers of inflammation and complement dysregulation support diagnosis andoutcome prediction in AD and MCI. Further replication is needed before clinical translatio
Molecular Detection and Genetic Diversity of Cytomegaloviruses and Lymphocryptoviruses in Free-Roaming and Captive African Green Monkeys (<i>Chlorocebus sabaeus</i>)
To date, limited information is available on cytomegalovirus (CMV) and lymphocryptovirus (LCV) from Chlorocebus monkeys. We report here high detection rates of herpesviruses in free-roaming African green monkeys (AGMs, Chlorocebus sabaeus) (26.4%, 23/87) and in captive AGMs (75%, 3/4) with respiratory disease on the Caribbean Island of St. Kitts. LCV (81.25%) was more prevalent than CMV (18.75%) in the AGMs. Applying a bigenic PCR approach (targeting DNA polymerase (DPOL) and glycoprotein B (gB) genes), long sequences were obtained from representative AGM CMV (KNA-SD6) and LCV (KNA-E4, -N6 and -R15) samples, and mixed LCV infections were identified in KNA-N6 and -R15. The nucleotide (nt) sequence (partial DPOL-intergenic region-partial gB) and partial DPOL- and gB-amino acid (aa) sequences of AGM CMV KNA-SD6 were closely related to Cytomegalovirus cercopithecinebeta5 isolates from grivet monkeys, whilst those of AGM LCV KNA-E4 and -N6 (and E4-like gB of KNA-R15) were more closely related to cognate sequences of erythrocebus patas LCV1 from patas monkey than other LCVs, corroborating the concept of cospeciation in the evolution of CMV/LCV. On the other hand, the partial DPOL aa sequence of KNA-R15, and additional gB sequences (N6-gB-2 and R15-gB-2) from samples KNA-N6 and -R15 (respectively) appeared to be distinct from those of Old World monkey LCVs, indicating LCV evolutionary patterns that were not synchronous with those of host species. The present study is the first to report the molecular prevalence and genetic diversity of CMV/LCV from free-roaming/wild and captive AGMs, and is the first report on analysis of CMV nt/deduced aa sequences from AGMs and LCV gB sequences from Chlorocebus monkeys
- …