6,055 research outputs found
Determining Neutrino Mass Hierarchy by Precision Measurements in Electron and Muon Neutrino Disappearance Experiments
Recently a new method for determining the neutrino mass hierarchy by
comparing the effective values of the atmospheric \Delta m^2 measured in the
electron neutrino disappearance channel, \Delta m^2(ee), with the one measured
in the muon neutrino disappearance channel, \Delta m^2(\mu \mu), was proposed.
If \Delta m^2(ee) is larger (smaller) than \Delta m^2(\mu \mu) the hierarchy is
of the normal (inverted) type. We re-examine this proposition in the light of
two very high precision measurements: \Delta m^2(\mu \mu) that may be
accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for
example, and \Delta m^2(ee) that can be envisaged using the novel Mossbauer
enhanced resonant \bar\nu_e absorption technique. Under optimistic assumptions
for the systematic uncertainties of both measurements, we estimate the
parameter region of (\theta_13, \delta) in which the mass hierarchy can be
determined. If \theta_13 is relatively large, sin^2 2\theta_13 \gsim 0.05, and
both of \Delta m^2(ee) and \Delta m^2(\mu \mu) can be measured with the
precision of \sim 0.5 % it is possible to determine the neutrino mass hierarchy
at > 95% CL for 0.3 \pi \lsim \delta \lsim 1.7 \pi for the current best fit
values of all the other oscillation parameters.Comment: 12 pages, 6 postscript figure
A versatile cryogenic system for liquid argon detectors
Detectors for direct dark matter search using noble gases in liquid phase as
detection medium need to be coupled to liquefaction, purification and
recirculation systems. A dedicated cryogenic system has been assembled and
operated at the INFN-Naples cryogenic laboratory with the aim to liquefy and
purify the argon used as active target in liquid argon detectors to study the
scintillation and ionization signals detected by large SiPMs arrays. The
cryogenic system is mainly composed of a double wall cryostat hosting the
detector, a purification stage to reduce the impurities below one part per
billion level, a condenser to liquefy the argon, a recirculation gas panel
connected to the cryostat equipped with a custom gas pump. The main features of
the cryogenic system are reported as well as the performances, long term
operations and stability in terms of the most relevant thermodynamic
parameters.Comment: Prepared for submission to JINST - LIDINE2022 September 21-23, 2022 -
University of Warsaw Librar
Discovery of a natural product that binds to the mycobacterium tuberculosis protein Rv1466 using native mass spectrometry
Elucidation of the mechanism of action of compounds with cellular bioactivity is important for progressing compounds into future drug development. In recent years, phenotype-based drug discovery has become the dominant approach to drug discovery over target-based drug discovery, which relies on the knowledge of a specific drug target of a disease. Still, when targeting an infectious disease via a high throughput phenotypic assay it is highly advantageous to identifying the compound’s cellular activity. A fraction derived from the plant Polyalthia sp. showed activity against Mycobacterium tuberculosis at 62.5 µge/µL. A known compound, altholactone, was identified from this fraction that showed activity towards M. tuberculosis at an minimum inhibitory concentration (MIC) of 64 µM. Retrospective analysis of a target-based screen against a TB proteome panel using native mass spectrometry established that the active fraction was bound to the mycobacterial protein Rv1466 with an estimated pseudo-Kd of 42.0 ± 6.1 µM. Our findings established Rv1466 as the potential molecular target of altholactone, which is responsible for the observed in vivo toxicity towards M. tuberculosis
Two-bands superconductivity with intra- and interband pairing for synthetic superlattices
We consider a model for superconductivity in a two-band superconductor,
having an anisotropic electronic structure made of two partially overlapping
bands with a first hole-like and a second electron-like fermi surface. In this
pairing scenario, driven by the interplay between interband and
intraband pairing terms, we have solved the two gap equations at the
critical temperature and calculate and the chemical potential
as a function of the number of carriers for various values of pairing
interactions, , , and . The results show the
complexity of the physics of condensates with multiple order parameters with
the chemical potential near band edges.Comment: 6 pages, 2 figure
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
Leading order analysis of neutrino induced dimuon events in the CHORUS experiment
We present a leading order QCD analysis of a sample of neutrino induced
charged-current events with two muons in the final state originating in the
lead-scintillating fibre calorimeter of the CHORUS detector. The results are
based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign
dimuon events collected during the exposure of the detector to the CERN Wide
Band Neutrino Beam between 1995 and 1998. % with GeV
and GeV collected %between 1995 and 1998. The analysis yields a
value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a
value of the ratio of the strange to non-strange sea in the nucleon of , improving the results obtained in similar analyses
by previous experiments.Comment: Submitted to Nuclear Physics
The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment
The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS)
was designed to perform the first detection of neutrino oscillations in
appearance mode through the study of oscillations. The
apparatus consists of an emulsion/lead target complemented by electronic
detectors and it is placed in the high energy long-baseline CERN to LNGS beam
(CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were
successfully carried out in 2007 and 2008 with the detector fully operational
with its related facilities for the emulsion handling and analysis. After a
brief description of the beam and of the experimental setup we report on the
collection, reconstruction and analysis procedures of first samples of neutrino
interaction events
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic
counters and target units based on nuclear photographic emulsion films have
been developed. The application to the OPERA experiment, that aims at detecting
oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is
reported in this paper. In order to reduce background due to latent tracks
collected before installation in the detector, on-site large-scale treatments
of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd)
packages, each made of a doublet of emulsion films, have been designed,
assembled and coupled to the OPERA target units ("ECC bricks"). A device has
been built to print X-ray spots for accurate interconnection both within the
CSd and between the CSd and the related ECC brick. Sample emulsion films have
been extensively scanned with state-of-the-art automated optical microscopes.
Efficient track-matching and powerful background rejection have been achieved
in tests with electronically tagged penetrating muons. Further improvement of
in-doublet film alignment was obtained by matching the pattern of low-energy
electron tracks. The commissioning of the overall OPERA alignment procedure is
in progress.Comment: 19 pages, 19 figure
Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions
The CHORUS experiment, designed to search for
oscillations, consists of a nuclear emulsion target and electronic detectors.
In this paper, results on the production of charged particles in a small sample
of charged-current neutrino-- and anti-neutrino--nucleus interactions at high
energy are presented. For each event, the emission angle and the ionization
features of the charged particles produced in the interaction are recorded,
while the standard kinematic variables are reconstructed using the electronic
detectors. The average multiplicities for charged tracks, the pseudo-rapidity
distributions, the dispersion in the multiplicity of charged particles and the
KNO scaling are studied in different kinematical regions. A study of
quasi-elastic topologies performed for the first time in nuclear emulsions is
also reported. The results are presented in a form suitable for use in the
validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure
- …