6,055 research outputs found

    Determining Neutrino Mass Hierarchy by Precision Measurements in Electron and Muon Neutrino Disappearance Experiments

    Get PDF
    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric \Delta m^2 measured in the electron neutrino disappearance channel, \Delta m^2(ee), with the one measured in the muon neutrino disappearance channel, \Delta m^2(\mu \mu), was proposed. If \Delta m^2(ee) is larger (smaller) than \Delta m^2(\mu \mu) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: \Delta m^2(\mu \mu) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and \Delta m^2(ee) that can be envisaged using the novel Mossbauer enhanced resonant \bar\nu_e absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of (\theta_13, \delta) in which the mass hierarchy can be determined. If \theta_13 is relatively large, sin^2 2\theta_13 \gsim 0.05, and both of \Delta m^2(ee) and \Delta m^2(\mu \mu) can be measured with the precision of \sim 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3 \pi \lsim \delta \lsim 1.7 \pi for the current best fit values of all the other oscillation parameters.Comment: 12 pages, 6 postscript figure

    A versatile cryogenic system for liquid argon detectors

    Full text link
    Detectors for direct dark matter search using noble gases in liquid phase as detection medium need to be coupled to liquefaction, purification and recirculation systems. A dedicated cryogenic system has been assembled and operated at the INFN-Naples cryogenic laboratory with the aim to liquefy and purify the argon used as active target in liquid argon detectors to study the scintillation and ionization signals detected by large SiPMs arrays. The cryogenic system is mainly composed of a double wall cryostat hosting the detector, a purification stage to reduce the impurities below one part per billion level, a condenser to liquefy the argon, a recirculation gas panel connected to the cryostat equipped with a custom gas pump. The main features of the cryogenic system are reported as well as the performances, long term operations and stability in terms of the most relevant thermodynamic parameters.Comment: Prepared for submission to JINST - LIDINE2022 September 21-23, 2022 - University of Warsaw Librar

    Discovery of a natural product that binds to the mycobacterium tuberculosis protein Rv1466 using native mass spectrometry

    Get PDF
    Elucidation of the mechanism of action of compounds with cellular bioactivity is important for progressing compounds into future drug development. In recent years, phenotype-based drug discovery has become the dominant approach to drug discovery over target-based drug discovery, which relies on the knowledge of a specific drug target of a disease. Still, when targeting an infectious disease via a high throughput phenotypic assay it is highly advantageous to identifying the compound’s cellular activity. A fraction derived from the plant Polyalthia sp. showed activity against Mycobacterium tuberculosis at 62.5 µge/µL. A known compound, altholactone, was identified from this fraction that showed activity towards M. tuberculosis at an minimum inhibitory concentration (MIC) of 64 µM. Retrospective analysis of a target-based screen against a TB proteome panel using native mass spectrometry established that the active fraction was bound to the mycobacterial protein Rv1466 with an estimated pseudo-Kd of 42.0 ± 6.1 µM. Our findings established Rv1466 as the potential molecular target of altholactone, which is responsible for the observed in vivo toxicity towards M. tuberculosis

    Two-bands superconductivity with intra- and interband pairing for synthetic superlattices

    Full text link
    We consider a model for superconductivity in a two-band superconductor, having an anisotropic electronic structure made of two partially overlapping bands with a first hole-like and a second electron-like fermi surface. In this pairing scenario, driven by the interplay between interband Vi,jV_{i,j} and intraband Vi,iV_{i,i} pairing terms, we have solved the two gap equations at the critical temperature T=TcT = T_c and calculate TcT_c and the chemical potential ÎĽ\mu as a function of the number of carriers nn for various values of pairing interactions, V1,1V_{1,1}, V2,2V_{2,2}, and V1,2V_{1,2}. The results show the complexity of the physics of condensates with multiple order parameters with the chemical potential near band edges.Comment: 6 pages, 2 figure

    Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network

    Get PDF
    We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/Ď€e/\pi separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV

    Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    Get PDF
    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. % with Eμ1,Eμ2>5E_{\mu 1},E_{\mu 2} > 5 GeV and Q2>3Q^2 > 3 GeV2^2 collected %between 1995 and 1998. The analysis yields a value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a value of the ratio of the strange to non-strange sea in the nucleon of κ=0.33±0.05±0.05\kappa = 0.33 \pm 0.05 \pm 0.05, improving the results obtained in similar analyses by previous experiments.Comment: Submitted to Nuclear Physics

    The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment

    Full text link
    The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode through the study of νμ→ντ\nu_\mu\to\nu_\tau oscillations. The apparatus consists of an emulsion/lead target complemented by electronic detectors and it is placed in the high energy long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2007 and 2008 with the detector fully operational with its related facilities for the emulsion handling and analysis. After a brief description of the beam and of the experimental setup we report on the collection, reconstruction and analysis procedures of first samples of neutrino interaction events

    Emulsion sheet doublets as interface trackers for the OPERA experiment

    Get PDF
    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress.Comment: 19 pages, 19 figure

    Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions

    Get PDF
    The CHORUS experiment, designed to search for νμ→ντ\nu_{\mu}\to\nu_{\tau} oscillations, consists of a nuclear emulsion target and electronic detectors. In this paper, results on the production of charged particles in a small sample of charged-current neutrino-- and anti-neutrino--nucleus interactions at high energy are presented. For each event, the emission angle and the ionization features of the charged particles produced in the interaction are recorded, while the standard kinematic variables are reconstructed using the electronic detectors. The average multiplicities for charged tracks, the pseudo-rapidity distributions, the dispersion in the multiplicity of charged particles and the KNO scaling are studied in different kinematical regions. A study of quasi-elastic topologies performed for the first time in nuclear emulsions is also reported. The results are presented in a form suitable for use in the validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure
    • …
    corecore