4,197 research outputs found

    Alpha Lipoic Acid (ALA) effects on subchorionic hematoma. Preliminary clinical results

    Get PDF
    OBJECTIVE: The clinic use of alpha Lipoic Acid (ALA) is linked to its capability to exert antioxidant effects and, more interestingly, to counteract the pathologic changes of complex networks of cytokines, chemokines and growth factors, restoring their physiological state. The aim of this randomized controlled clinical trial was to test the contribution of oral supplementation of ALA to the standard treatment with Progesterone vaginal suppositories, in healing subchorionic hematomas in patients with threatened miscarriage. Controls were administered only Progesterone suppositories. PATIENTS AND METHODS: Nineteen pregnant women in the first trimester of gestation, with threatened miscarriage and ultrasound evidence of subchorionic hematoma, were included in the trial and randomly divided in two groups: controls, treated with 400 mg Progesterone (200 mg 2 times per day), given by vaginal suppositories, and case study treated with the same Progesterone dosage, plus ALA, given orally at the dose of 600 mg (300 mg 2 times per day, DAV®, Lo.Li. Pharma srl, Italy). Sixteen patients completed the trial. Treatment was performed until complete resolution of the clinical picture. RESULTS: In both groups, the subjects improved significantly but, in general, a better and faster evolution in the major signs of threatened miscarriage was observed in the subjects treated with ALA and Progesterone. In these patients, the speed of resorption of subchorionic hematoma was significantly (p ≤ 0.05) superior compared to controls. The ALA and Progesterone group showed a faster decrease or disappearance of all symptoms than that observed in the control group, however the difference was not significant. CONCLUSIONS: These preliminary results suggest that ALA supplementation significantly contributes to speed up the process of restoration of physiological conditions in threatened miscarriage and ameliorates the medical conditions of both the mothers and the foetus, probably modulating the networks of cytokines, growth factors and other molecules

    LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies

    Get PDF
    Dwarf Irregular galaxies (dIrrs) are the smallest stellar systems with extended HI discs. The study of the kinematics of such discs is a powerful tool to estimate the total matter distribution at these very small scales. In this work, we study the HI kinematics of 17 galaxies extracted from the `Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey' (LITTLE THINGS). Our approach differs significantly from previous studies in that we directly fit 3D models (two spatial dimensions plus one spectral dimension) using the software 3D^\text{3D}BAROLO, fully exploiting the information in the HI datacubes. For each galaxy we derive the geometric parameters of the HI disc (inclination and position angle), the radial distribution of the surface density, the velocity-dispersion (σv\sigma_v) profile and the rotation curve. The circular velocity (Vc_{\text{c}}), which traces directly the galactic potential, is then obtained by correcting the rotation curve for the asymmetric drift. As an initial application, we show that these dIrrs lie on a baryonic Tully-Fisher relation in excellent agreement with that seen on larger scales. The final products of this work are high-quality, ready-to-use kinematic data (Vc\textrm{V}_\textrm{c} and σv\sigma_v) that we make publicly available. These can be used to perform dynamical studies and improve our understanding of these low-mass galaxies.Comment: 36 pages, 28 figures, 2 tables. Submitted to MNRAS (revised version after the referee report). The final rotation curves can be downloaded from http://www.filippofraternali.com/styled-9/index.htm

    Oral health of elite athletes and association with performance: a systematic review.

    Get PDF
    We aimed to systematically review the epidemiology of oral disease and trauma in the elite athlete population and to investigate the impact of oral health on sporting performance

    The Endocannabinoid System: A Putative Role in Neurodegenerative Diseases

    Get PDF
    BACKGROUND: Following the characterization of the chemical structure of D9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana, researchers have moved on with scientific valuable explorations. OBJECTIVES: The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases. MATERIALS AND METHODS: The article is a critical analysis of the most recent data currently present in scientific literature on the subject; a qualitative synthesis of only the most significant articles has been performed. RESULTS: In central nervous system, endocannabinoids show a neuromodulatory function, often of retrograde type. This way, they play an important role in synaptic plasticity and in cognitive, motor, sensory and affective processes. In addition, in some acute or chronic pathologies of central nervous system, such as neurodegenerative and neuroinflammatory diseases, endocannabinoids can perform a pro-homeostatic and neuroprotective function, through the activation of CB1 and CB2 receptors. Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases. CONCLUSIONS: The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology

    Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Get PDF
    Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m) by means of a Ground-Based Millimeter-wave Spectrometer (GBMS). Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ∼17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ∼32 km are very well correlated with the solar illumination experienced by air masses over the previous ∼15 days, showing that already at 32 km altitude ozone photochemistry dominates over transport processes. The correlation of lower stratospheric ozone concentrations with potential vorticity as an indicator of transport is instead not as clear-cut, due to very complex mixing processes that characterize stratospheric air at mid-latitudes. Correlations of O3 over Testa Grigia with stratospheric tracers such as N2O and HCN, also observed by means of the GBMS, are planned for the future, in order to better characterize lower stratospheric dynamics and therefore lower stratospheric ozone concentrations at mid-latitudes

    LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies

    Get PDF
    Dwarf irregular galaxies (dIrrs) are the smallest stellar systems with extended H i discs. The study of the kinematics of such discs is a powerful tool to estimate the total matter distribution at these very small scales. In this work, we study the H i kinematics of 17 galaxies extracted from the 'Local Irregulars That Trace Luminosity Extremes, The H i Nearby Galaxy Survey' (LITTLE THINGS). Our approach differs significantly from previous studies in that we directly fit 3D models (two spatial dimensions plus one spectral dimension) using the software 3Dbarolo, fully exploiting the information in the H i data cubes. For each galaxy, we derive the geometric parameters of the H i disc (inclination and position angle), the radial distribution of the surface density, the velocity-dispersion (σv) profile and the rotation curve. The circular velocity (Vc), which traces directly the galactic potential, is then obtained by correcting the rotation curve for the asymmetric drift. As an initial application, we show that these dIrrs lie on a baryonic Tully-Fisher relation in excellent agreement with that seen on larger scales. The final products of this work are high-quality, ready-to-use kinematic data (Vc and σv) that we make publicly available. These can be used to perform dynamical studies and improve our understanding of these low-mass galaxies

    Towards developmental modelling of tree root systems

    Get PDF
    Knowledge of belowground structures and processes is essential for understanding and predicting ecosystem functioning, and consequently in the development of adaptive strategies to safeguard production from trees and woody plants into the future. In the past, research has mainly been concentrated on growth models for the prediction of agronomic or forest production. Newly emerging scientific challenges, e.g. climate change and sustainable development, call for new integrated predictive methods where root systems development will become a key element for understanding global biological systems. The types of input data available from the various branches of woody root research, including biomass allocation, architecture, biomechanics, water and nutrient supply, are discussed with a view to the possibility of incorporating them into a more generic developmental model. We discuss here the main focus of root system modelling to date, including a description of simple allometric biomass models, and biomechanical stress models, and then build in complexity through static growth models towards architecture models. The next progressive and logical step in developing an inclusive developmental model that integrates these modelling approaches is discussed.Knowledge of belowground structures and processes is essential for understanding and predicting ecosystem functioning, and consequently in the development of adaptive strategies to safeguard production from trees and woody plants into the future. In the past, research has mainly been concentrated on growth models for the prediction of agronomic or forest production. Newly emerging scientific challenges, e.g. climate change and sustainable development, call for new integrated predictive methods where root systems development will become a key element for understanding global biological systems. The types of input data available from the various branches of woody root research, including biomass allocation, architecture, biomechanics, water and nutrient supply, are discussed with a view to the possibility of incorporating them into a more generic developmental model. We discuss here the main focus of root system modelling to date, including a description of simple allometric biomass models, and biomechanical stress models, and then build in complexity through static growth models towards architecture models. The next progressive and logical step in developing an inclusive developmental model that integrates these modelling approaches is discussed.Knowledge of belowground structures and processes is essential for understanding and predicting ecosystem functioning, and consequently in the development of adaptive strategies to safeguard production from trees and woody plants into the future. In the past, research has mainly been concentrated on growth models for the prediction of agronomic or forest production. Newly emerging scientific challenges, e.g. climate change and sustainable development, call for new integrated predictive methods where root systems development will become a key element for understanding global biological systems. The types of input data available from the various branches of woody root research, including biomass allocation, architecture, biomechanics, water and nutrient supply, are discussed with a view to the possibility of incorporating them into a more generic developmental model. We discuss here the main focus of root system modelling to date, including a description of simple allometric biomass models, and biomechanical stress models, and then build in complexity through static growth models towards architecture models. The next progressive and logical step in developing an inclusive developmental model that integrates these modelling approaches is discussed.Peer reviewe

    Residual vein thrombosis for assessing duration of anticoagulation after unprovoked deep vein thrombosis of the lower limbs: the extended DACUS study.

    Get PDF
    Abstract The safest duration of anticoagulation after idiopathic deep vein thrombosis (DVT) is unknown. We conducted a prospective study to assess the optimal duration of vitamin K antagonist (VKA) therapy considering the risk of recurrence of thrombosis according to residual vein thrombosis (RVT). Patients with a first unprovoked DVT were evaluated for the presence of RVT after 3 months of VKA administration; those without RVT suspended VKA, while those with RVT continued oral anticoagulation for up to 2 years. Recurrent thrombosis and/or bleeding events were recorded during treatment (RVT group) and 1 year after VKA withdrawal (both groups). Among 409 patients evaluated for unprovoked DVT, 33.2% (136 of 409 patients) did not have RVT and VKA was stopped. The remaining 273 (66.8%) patients with RVT received anticoagulants for an additional 21 months; during this period of treatment, recurrent venous thromboembolism and major bleeding occurred in 4.7% and 1.1% of patients, respectively. After VKA suspension, the rates of recurrent thrombotic events were 1.4% and 10.4% in the no-RVT and RVT groups, respectively (relative risk = 7.4; 95% confidence interval = 4.9-9.9). These results indicate that in patients without RVT, a short period of treatment with a VKA is sufficient; in those with persistent RVT, treatment extended to 2 years substantially reduces, but does not eliminate, the risk of recurrent thrombosis
    • …
    corecore