277 research outputs found

    Respiratory Control: Central and Peripheral Mechanisms

    Get PDF
    Understanding of the respiratory control system has been greatly improved by technological and methodological advances. This volume integrates results from many perspectives, brings together diverse approaches to the investigations, and represents important additions to the field of neural control of breathing. Topics include membrane properties of respiratory neurons, in vitro studies of respiratory control, chemical neuroanatomy, central integration of respiratory afferents, modulation of respiratory pattern by peripheral afferents, respiratory chemoreception, development of respiratory control, behavioral control of breathing, and human ventilatory control. Forty-seven experts in the field report research and discuss novel issues facing future investigations in this collection of papers from an international conference of nearly two hundred leading scientists held in October 1990. This research is of vital importance to respiratory physiologists and those in neurosciences and neurobiology who work with integrative sensory and motor systems and is pertinent to both basic and clinical investigations. Respiratory Control is destined to be widely cited because of the strength of the contributors and the dearth of similar works. The four editors are affiliated with the University of Kentucky: Dexter F. Speck is associate professor of physiology and biophysics, Michael S. Dekin is assistant professor of biological sciences, W. Robert Revelette is research scientist of physiology and biophysics, and Donald T. Frazier is professor and chairman of physiology and biophysics. Experts in the field report current research and discuss novel issues facing future investigations. —SciTech Book Newshttps://uknowledge.uky.edu/upk_biology/1002/thumbnail.jp

    HEAT: Hydraulic and Electric Animation Team

    Get PDF
    Each New Years’ Day, the Cal Poly Rose Float presents a flower-covered float to the world at the Tournament of Roses parade. This floral display, paired with moving mechanical animations, shows off Cal Poly to the world. This project strove to keep Cal Poly on the cutting edge of technology both in parade floats, and in engineering, by creating a completely electric-powered animation system. To accomplish this, a group of students set out to make the fully electric animation system that can power both the hydraulic and electric mechanisms on the Float. This was accomplished through months of planning and development leading up to manufacturing, assembling, and testing the system. The students used deep cycle lead acid batteries to power an electric motor. This motor turns a hydraulic pump that pumps fluid throughout the animated mechanism actuators. Aside from being cutting edge, this new animation system is both quieter and a lower-profile on the float. This allows for the design of the float to be lower, more unique, and beautiful. It also creates less noise pollution during animation testing and makes communication easier during this time

    Neuroprotective role for RORA in Parkinson’s disease revealed by analysis of post-mortem brain and a dopaminergic cell line

    Get PDF
    Parkinson's disease (PD) is almost twice as prevalent in men, which has largely been attributed to neuroprotective effect of oestradiol in women. RORA (retinoic acid receptor-related orphan receptor alpha) regulates the transcription of central aromatase, the enzyme responsible for local oestradiol synthesis, simultaneously, RORA expression is regulated by sex hormones. Moreover, RORA protects neurones against oxidative stress, a key mechanism contributing to the loss of dopaminergic neurones in PD. Therefore, we hypothesized that there would be sex differences in RORA expression in the substantia nigra pars compacta (SNpc), which could contribute to sex differences observed in PD prevalence and pathogenesis. In a case control study, qPCR and western blot analyses were used to quantify gene and protein expression in the SNpc of post-mortem brains (n = 14 late-stage PD and 11 age and sex matched controls). The neuroprotective properties of a RORA agonist were then investigated directly using a cell culture toxin-based model of PD coupled with measures of viability, mitochondrial function and apoptosis. RORA was expressed at significantly higher levels in the SNpc from control females' brains compared to males. In PD, we found a significant increase in SNpc RORA expression in male PD compared to female PD. Treatment with a RORA agonist showed a significant neuroprotection in our cell culture model of PD and revealed significant effects on intracellular factors involved in neuronal survival and demise. This study is the first to demonstrate a sex specific pattern of RORA protein and gene expression in the SNpc of controls post-mortem human brains, and to show that this is differentially altered in male and female PD subjects, thus supporting a role for RORA in sex-specific aspects of PD. Furthermore, our in vitro PD model indicates mechanisms whereby a RORA agonist exerts its neuroprotective effect, thereby highlighting the translational potential for RORA ligands in PD

    Bypass of mutagenic O 6 -Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases

    Get PDF
    The generation of chemical alkylating agents from nitrosation of glycine and bile acid conjugates in the gastrointestinal tract is hypothesized to initiate carcinogenesis. O6-carboxymethylguanine (O6-CMG) is a product of DNA alkylation derived from nitrosated glycine. Although the tendency of the structurally related adduct O6-methylguanine to code for the misincoporation of TTP during DNA replication is well-established, the impact of the presence of the O6-CMG adduct in a DNA template on the efficiency and fidelity of translesion DNA synthesis (TLS) by human DNA polymerases (Pols) has hitherto not been described. Herein, we characterize the ability of the four human TLS Pols η, Îč, Îș, and ζ and the replicative Pol ÎŽ to bypass O6-CMG in a prevalent mutational hot-spot for colon cancer. The results indicate that Pol η replicates past O6-CMG, incorporating dCMP or dAMP, whereas Pol Îș incorporates dCMP only, and Pol Îč incorporates primarily dTMP. Additionally, the subsequent extension step was carried out with high efficiency by TLS Pols η, Îș, and ζ, while Pol Îč was unable to extend from a terminal mismatch. These results provide a first basis of O6-CMG-promoted base misincorporation by Y- and B-family polymerases potentially leading to mutational signatures associated with colon cancer

    Global seaweed productivity

    Get PDF
    The magnitude and distribution of net primary production (NPP) in the coastal ocean remains poorly constrained, particularly for shallow marine vegetation. Here, using a compilation of in situ annual NPP measurements across >400 sites in 72 geographic ecoregions, we provide global predictions of the productivity of seaweed habitats, which form the largest vegetated coastal biome on the planet. We find that seaweed NPP is strongly coupled to climatic variables, peaks at temperate latitudes, and is dominated by forests of large brown seaweeds. Seaweed forests exhibit exceptionally high per-area production rates (a global average of 656 and 1711 gC m−2 year−1 in the subtidal and intertidal, respectively), being up to 10 times higher than coastal phytoplankton in temperate and polar seas. Our results show that seaweed NPP is a strong driver of production in the coastal ocean and call for its integration in the oceanic carbon cycle, where it has traditionally been overlooked.publishedVersio

    High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    Get PDF
    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic, quantitative and multi-scale techniques in understanding the different cellular processing routes of functionalised nanomaterials. This correlative approach has wide implications for assessing the biopersistence of MWNT aggregates elsewhere in the body, in particular their interaction with macrophages in the lung

    Drug–gene and drug–drug interactions associated with tramadol and codeine therapy in the INGENIOUS trial

    Get PDF
    Background: Tramadol and codeine are metabolized by CYP2D6 and are subject to drug-gene and drug-drug interactions. Methods: This interim analysis examined prescribing behavior and efficacy in 102 individuals prescribed tramadol or codeine while receiving pharmaco-genotyping as part of the INGENIOUS trial (NCT02297126). Results: Within 60 days of receiving tramadol or codeine, clinicians more frequently prescribed an alternative opioid in ultrarapid and poor metabolizers (odds ratio: 19.0; 95% CI: 2.8-160.4) as compared with normal or indeterminate metabolizers (p = 0.01). After adjusting the CYP2D6 activity score for drug-drug interactions, uncontrolled pain was reported more frequently in individuals with reduced CYP2D6 activity (odds ratio: 0.50; 95% CI: 0.25-0.94). Conclusion: Phenoconversion for drug-drug and drug-gene interactions is an important consideration in pharmacogenomic implementation; drug-drug interactions may obscure the potential benefits of genotyping

    Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*

    Get PDF
    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of ∌\sim30 ÎŒ\muas (∌\sim3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∌\sim4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∌\sim3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
    • 

    corecore