9 research outputs found

    KAP1 controls endogenous retroviruses in embryonic stem cells

    No full text
    More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5' untranslated region (5'UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5'UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development

    Retrotransposons shape species-specific embryonic stem cell gene expression.

    Get PDF
    Over half of our genome is composed of retrotransposons, which are mobile elements that can readily amplify their copy number by replicating through an RNA intermediate. Most of these elements are no longer mobile but still contain regulatory sequences that can serve as promoters, enhancers or repressors for cellular genes. Despite dominating our genetic content, little is known about the precise functions of retrotransposons, which include both endogenous retroviruses (ERVs) and non-LTR elements like long interspersed nuclear element 1 (LINE-1). However, a few recent cutting-edge publications have illustrated how retrotransposons shape species-specific stem cell gene expression by two opposing mechanisms, involving their recruitment of stem cell-enriched transcription factors (TFs): firstly, they can activate expression of genes linked to naïve pluripotency, and secondly, they can induce repression of proximal genes. The paradox that different retrotransposons are active or silent in embryonic stem cells (ESCs) can be explained by differences between retrotransposon families, between individual copies within the same family, and between subpopulations of ESCs. Since they have coevolved with their host genomes, some of them have been co-opted to perform species-specific beneficial functions, while others have been implicated in genetic disease. In this review, we will discuss retrotransposon functions in ESCs, focusing on recent mechanistic advances of how HERV-H has been adopted to preserve human naïve pluripotency and how particular LINE-1, SVA and ERV family members recruit species-specific transcriptional repressors. This review highlights the fine balance between activation and repression of retrotransposons that exists to harness their ability to drive evolution, while minimizing the risk they pose to genome integrity

    Endogenous retroviruses in the origins and treatment of cancer

    No full text

    High Risk of Anal and Rectal Cancer in Patients With Anal and/or Perianal Crohn’s Disease

    No full text
    International audienceBackground & AimsLittle is known about the magnitude of the risk of anal and rectal cancer in patients with anal and/or perineal Crohn’s disease. We aimed to assess the risk of anal and rectal cancer in patients with Crohn’s perianal disease followed up in the Cancers Et Surrisque AssociĂ© aux Maladies Inflammatoires Intestinales En France (CESAME) cohort.MethodsWe collected data from 19,486 patients with inflammatory bowel disease (IBD) enrolled in the observational CESAME study in France, from May 2004 through June 2005; 14.9% of participants had past or current anal and/or perianal Crohn’s disease. Subjects were followed up for a median time of 35 months (interquartile range, 29–40 mo). To identify risk factors for anal cancer in the total CESAME population, we performed a case-control study in which participants were matched for age and sex.ResultsAmong the total IBD population, 8 patients developed anal cancer and 14 patients developed rectal cancer. In the subgroup of 2911 patients with past or current anal and/or perianal Crohn’s lesions at cohort entry, 2 developed anal squamous-cell carcinoma, 3 developed perianal fistula–related adenocarcinoma, and 6 developed rectal cancer. The corresponding incidence rates were 0.26 per 1000 patient-years for anal squamous-cell carcinoma, 0.38 per 1000 patient-years for perianal fistula–related adenocarcinoma, and 0.77 per 1000 patient-years for rectal cancer. Among the 16,575 patients with ulcerative colitis or Crohn’s disease without anal or perianal lesions, the incidence rate of anal cancer was 0.08 per 1000 patient-years and of rectal cancer was 0.21 per 1000 patient-years. Among factors tested by univariate conditional regression (IBD subtype, disease duration, exposure to immune-suppressive therapy, presence of past or current anal and/or perianal lesions), the presence of past or current anal and/or perianal lesions at cohort entry was the only factor significantly associated with development of anal cancer (odds ratio, 11.2; 95% CI, 1.18-551.51; P = .03).ConclusionsIn an analysis of data from the CESAME cohort in France, patients with anal and/or perianal Crohn’s disease have a high risk of anal cancer, including perianal fistula–related cancer, and a high risk of rectal cancer

    Transposable element-derived sequences in vertebrate development

    No full text
    corecore