68 research outputs found
Manuscript has been retracted
International Journal of Exercise Science 6(3) : 236-241, 2013. Manuscript has been retracted
Manuscript has been retracted
International Journal of Exercise Science 7(2) : 128-139, 2014. Manuscript has been retracted
Atmospheric Processing Module for Mars Propellant Production
The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methane/oxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx.8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO2 is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a HiCO2 recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO2/hr for 14 hr, (3) the testing of the CO2 freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH4/hr and 71.3 g H2O/hr along with verification of their purity. The resulting 2.22 kg of CH4/O2 propellant per 14 hr day (including O2 from electrolysis of water recovered from regolith, which also supplies the H2 for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASA's new Mars exploration plans will be discussed
Functional Electric Stimulation Cycle Ergometry Training Effect on Lower Limb Muscles in Acute SCI Individuals
The purpose of this study was to compare three different intervals for a between sets rest period during a common isokinetic knee extension strength-testing protocol of twenty older Brazilian men (66.30 ± 3.92 yrs). The volunteers underwent unilateral knee extension (Biodex System 3) testing to determine their individual isokinetic peak torque at 60, 90, and 120° ·s-1. The contraction speeds and the rest periods between sets (30, 60 and 90 s) were randomly performed in three different days with a minimum rest period of 48 hours. Significant differences between and within sets were analyzed using a One Way Analysis of Variance (ANOVA) with repeated measures. Although, at angular velocity of 60°·s-1 produced a higher peak torque, there were no significant differences in peak torque among any of the rest periods. Likewise, there were no significant differences between mean peak torque among all resting periods (30, 60 and 90s) at angular velocities of 90 and 120°·s-1. The results showed that during a common isokinetic strength testing protocol a between set rest period of at least 30 s is sufficient for recovery before the next test set in older men
Plasma Membrane Insertion of KCa2.3 (SK3) is Dependent Upon the SNARE Proteins, Syntaxin-4 and SNAP23
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. We previously demonstrated endocytosis of KCa2.3 is caveolin-1-, dynamin II- and Rab5-dependent. KCa2.3 then enters Rab35/EPI64C- and RME-1-containing recycling endosomes and is returned to the plasma membrane (PM). Herein, we report on the mechanism by which KCa2.3 is inserted into the PM during recycling and following exit from the Golgi. We demonstrate KCa2.3 colocalizes with SNAP-23 and Syntaxin-4 in the PM of HEK and endothelial cells by confocal immunofluorescence microscopy. We further show KCa2.3 can be co-immunoprecipitated with SNAP-23 and Syntaxin-4. Overexpression of either Syntaxin-4 or SNAP-23 increased PM expression of KCa2.3, whereas shRNA-mediated knockdown of these SNARE proteins significantly decreased PM KCa2.3 expression, as assessed by cell surface biotinylation. Whole-cell patch clamp studies confirmed knockdown of SNAP-23 significantly decreased the apamin sensitive, KCa2.3 current. Using standard biotinylation/stripping methods, we demonstrate shRNA mediated knockdown of SNAP-23 inhibits recycling of KCa2.3 following endocytosis, whereas scrambled shRNA had no effect. Finally, using biotin ligase acceptor peptide (BLAP)-tagged KCa2.3, coupled with ER-resident biotin ligase (BirA), channels could be biotinylated in the ER after which we evaluated their rate of insertion into the PM following Golgi exit. We demonstrate knockdown of SNAP-23 significantly slows the rate of Golgi to PM delivery of KCa2.3. The inhibition of both recycling and PM delivery of newly synthesized KCa2.3 channels likely accounts for the decreased PM expression observed following knockdown of these SNARE proteins. In total, our results suggest insertion of KCa2.3 into the PM depends upon the SNARE proteins, Syntaxin-4 and SNAP-23
Integrating positive psychology constructs in psychotherapy: therapist perspectives on flourishing and virtue
The term "flourishing" means to grow or prosper and refers to a holistic, developmental sense of well being (VanderWeele et a l., 2019). There is growing interest in the principles of flourishing in psychotherapy. For instance, there are 20 studies of positive psychotherapy with results on par with other bona fide treatments and emphasize aspects of flourishing as factors in clie nt progress (e.g., AEDP, ACT; Fosha, 200; Rashid & Seligman, 2018). Still, the concept of flourishing remains largely segregated from mainstream mental healthcare practice. The disease model dominance within mental healthcare employs a view of the human pe rson as "clusters of symptoms" with the goal of treatment being the reduction of negative symptoms rather than increasing flourishing. Little is known about how mental health treatments improve clients' flourishing, as most studies have focused on symptom reduction. To address these limitations, the current study facilitated collaboration among four clinical research teams representing different clinical sites and training perspectives (e.g., CBT, Psychodynamic, Integrated). In doing so, we conducted eight focus groups utilizing a grounded theory qualitative approach to explore the processes through which flourishing is fostered in psychotherapy and the training of mental healthcare professionals.Published versio
Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status
BACKGROUND: Although soy protein may have many health benefits derived from its associated antioxidants, many male exercisers avoid soy protein. This is due partly to a popular, but untested notion that in males, soy is inferior to whey in promoting muscle weight gain. This study provided a direct comparison between a soy product and a whey product. METHODS: Lean body mass gain was examined in males from a university weight training class given daily servings of micronutrient-fortified protein bars containing soy or whey protein (33 g protein/day, 9 weeks, n = 9 for each protein treatment group). Training used workouts with fairly low repetition numbers per set. A control group from the class (N = 9) did the training, but did not consume either type protein bar. RESULTS: Both the soy and whey treatment groups showed a gain in lean body mass, but the training-only group did not. The whey and training only groups, but not the soy group, showed a potentially deleterious post-training effect on two antioxidant-related related parameters. CONCLUSIONS: Soy and whey protein bar products both promoted exercise training-induced lean body mass gain, but the soy had the added benefit of preserving two aspects of antioxidant function
Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets
KEPLER ECLIPSING BINARY STARS. VII. the CATALOG of ECLIPSING BINARIES FOUND in the ENTIRE KEPLER DATA SET
The primary Kepler Mission provided nearly continuous monitoring of ∼200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu
Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory
Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization. Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical changes that bias competition between oppositely directed fast- and slow-activating conductances operating at subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly biased with equivalent consequences for excitability. “Bias” can arise from a multitude of molecular changes occurring alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability; however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper understanding of degenerate causal relationships has important implications for how we understand and treat neuropathic pain
- …