44 research outputs found
Biologically meaningful coverage indicators for eliminating malaria transmission.
Mosquitoes, which evade contact with long-lasting insecticidal nets and indoor residual sprays, by feeding outdoors or upon animals, are primary malaria vectors in many tropical countries. They can also dominate residual transmission where high coverage of these front-line vector control measures is achieved. Complementary strategies, which extend insecticide coverage beyond houses and humans, are required to eliminate malaria transmission in most settings. The overwhelming diversity of the world's malaria transmission systems and optimal strategies for controlling them can be simply conceptualized and mapped across two-dimensional scenario space defined by the proportion of blood meals that vectors obtain from humans and the proportion of human exposure to them which occurs indoors
Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats.
Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3-5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95-100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42-98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique
Recommended from our members
The CMIP5 model and simulation documentation: a new standard for climate modelling metadata
Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model
Background
Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis - malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events.
Methods and Findings
Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats that persist or retain PPF activity (Ux) for only one week , where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of the proportional coverage of the ovipositing mosquito population with PPF contamination (CM) by the ovitrap-detectable rates of oviposition by wild mosquitoes into this subset of habitats , divided by the titre of contaminated mosquitoes required to render them unproductive , that approximately approach unity .
Conclusions
The simple multiplicative relationship between CM and , and the simple exponential decay effect they have upon uncontaminated aquatic habitats, allows application of this model by theoreticians and field biologists alike
Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes
BACKGROUND\ud
\ud
High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival.\ud
\ud
METHODS AND FINDINGS\ud
\ud
We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria.\ud
\ud
CONCLUSIONS\ud
\ud
Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it
The common information model for climate modelling digital repositories: The metafor project
A poster highlighting the common information model for climate modelling digital repositorie
The potential of a new larviciding method for the control of malaria vectors
Malaria pathogens are transmitted to humans by the bite of female Anopheles mosquitoes. The juvenile stages of these mosquitoes develop in a variety of water bodies and are key targets for vector control campaigns involving the application of larvicides. The effective operational implementation of these campaigns is difficult, time consuming, and expensive. New evidence however, suggests that adult mosquitoes can be co-opted into disseminating larvicides in a far more targeted and efficient manner than can be achieved using conventional methods
Ecology: a prerequisite for malaria elimination and eradication
* Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific
* The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria
* Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission
* Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog
Is it time for biocatalysis in fragment-based drug discovery?
From Europe PMC via Jisc Publications RouterHistory: ppub 2020-10-01, epub 2020-10-07Publication status: PublishedFunder: European Research Council; Grant(s): 742987Funder: Engineering and Physical Sciences Research Council; Grant(s): EP/S01778X/1The use of biocatalysts for fragment-based drug discovery has yet to be fully investigated, despite the promise enzymes hold for the synthesis of poly-functional, non-protected small molecules. Here we analyze products of the biocatalysis literature to demonstrate the potential for not only fragment generation, but also the enzyme-mediated elaboration of these fragments. Our analysis demonstrates that biocatalytic products can readily populate 3D chemical space, offering diverse catalytic approaches to help generate new, bioactive molecules
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved