99 research outputs found

    GPCR-OKB: the G protein coupled receptor oligomer knowledge base

    Get PDF
    Rapid expansion of available data about G Protein Coupled Receptor (GPCR) dimers/oligomers over the past few years requires an effective system to organize this information electronically. Based on an ontology derived from a community dialog involving colleagues using experimental and computational methodologies, we developed the GPCR-Oligomerization Knowledge Base (GPCR-OKB). GPCR-OKB is a system that supports browsing and searching for GPCR oligomer data. Such data were manually derived from the literature. While focused on GPCR oligomers, GPCR-OKB is seamlessly connected to GPCRDB, facilitating the correlation of information about GPCR protomers and oligomers

    Direct liquid injection chemical vapor deposition of ZrO2 films from a heteroleptic Zr precursor: Interplay between film characteristics and corrosion protection of stainless steel

    Get PDF
    The direct liquid injection chemical vapor deposition (DLI-CVD) of uniform and dense zirconium oxide (ZrO2) thin films applicable as corrosion protection coatings (CPCs) is reported. We present the entire development chain from the rational choice and thermal evaluation of the suitable heteroleptic precursor [Zr(OiPr)2(tbaoac)2] over the detailed DLI-CVD process design and finally benchmarking the CPC behavior using electrochemical impedance spectroscopy (EIS). For a thorough development of the growth process, the deposition temperature (Tdep) is varied in the range of 400 – 700 °C on Si(100) and stainless steel (AISI 304) substrates. Resulting thin films are thoroughly analyzed in terms of structure, composition, and morphology. Grazing incidence X-ray diffractometry (GIXRD) reveals an onset of crystallization at Tdep ≥ 500 °C yielding monoclinic and even cubic phase at low temperatures. At Tdep = 400 °C, isotropic growth of XRD amorphous material is shown to feature cubic crystalline domains at the interfacial region as revealed by electron diffraction. Corrosion results obtained through EIS measurements and further immersion tests revealed improved CPC characteristic for the 400 °C processed ZrO2 coatings compared to the ones deposited at Tdep ≥ 500 °C, yielding valuable insights into the correlation between growth parameter and CPC performance which are of high relevance for future exploration of CPCs

    Transpiration and leaf growth of potato clones in response to soil water deficit

    Get PDF
    Potato (Solanum tuberosum ssp. Tuberosum) crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW) approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts) is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Transpiration response of de-rooted peanut plants to aquaporin inhibitors

    No full text
    Selected genotypes of peanut (Arachis hypogaea L.) have been identified that show constrained transpiration rates (TR) at high atmospheric vapor pressure deficits (VPD) in contrast to genotypes that exhibit continually increasing TR with increasing VPD. The constraint of TR has been proposed as a putative trait for soil water conservation and improved crop performance during late-season water deficits. In soybean (Glycine max (L.) Merr.), limited TR at high VPD has been found to be related to a decreased hydraulic conductance in leaves. A different population of water-transport-mediating proteins, i.e., aquaporins (AQP), was indicated in soybean by measuring the response of shoot TR to treatment with a silver AQP inhibitor. The objective of this study was to test the shoots of four peanut genotypes for a transpiration response when treated with four inhibitors of AQP, which appear to have differing modes of action in inhibiting AQP. Transpiration rate of all four genotypes were equally sensitive to exposure to cycloheximide and mercuric chloride (HgCl 2). Treatment of the shoots of three genotypes (ICGS 44, TMV 2 and ICGV 86699) with silver nitrate (AgNO 3) and hydrogen tetrachloroaurate (HAuCl 4) resulted in decreased TR while treatment of genotype ICGV 91284, which had constrained TR at high VPD, resulted in little or no decrease of TR. In fact, the AgNO 3 treatment of this fourth genotype resulted in a stimulation of TR at higher AgNO 3 concentrations. Among the three genotypes with TR not constrained at high VPD, two genotypes had less decrease in TR with HAuCl 4 treatment than the third genotype. These results identified major differences in shoot response to AQP inhibitors, which were hypothesized to indicate different populations of AQP in the leaves of these peanut genotypes. © 2012 Elsevier B.V

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore