38 research outputs found

    The influence of rice husk ash addition on the properties of metakaolin-based geopolymers

    Get PDF
    This paper investigates the replacement of metakaolin (MK) with rice husk ash (RHA) in the production of alkali-activated binders or geopolymers. The influence of the RHA addition on compressive and flexural strength, as well as water absorption and apparent porosity were determined, in terms of the percentage of RHA in the mixture and molar ratios of the mixes. Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive spectroscopy (EDS) were carried out to assess the changes in the microstructure of the geopolymer matrices with the RHA addition. Results have shown that RHA may be a supplementary precursor for geopolymers. The composition of the geopolymer matrices containing 0-40% RHA is very similar, which indicates that the additional Si provided by RHA is not incorporated to the geopolymer matrix. In addition, geopolymers with RHA content higher than 40% present a plastic behavior, characterized by extremely low strength and high deformation, which can be attributed to the formation of silica gel in formulations containing variable Si/Al ratio

    Management and valorisation of wastes through use in producing alkali-activated cement materials

    Get PDF
    There is a growing global interest in maximising the re-use and recycling of waste, to minimise the environmental impacts associated with waste treatment and disposal. Use of high-volume wastes in the production of blended or novel cements (including alkali-activated cements) is well known as a key pathway by which these wastes can be re-used. This paper presents a critical overview of the urban, agricultural, mining and industrial wastes that have been identified as potential precursors for the production of alkali-activated cement materials, or that can be effectively stabilised/solidified via alkali activation, to assure their safe disposal. The central aim of this review is to elucidate the potential advantages and pitfalls associated with the application of alkali-activation technology to a wide variety of wastes that have been claimed to be suitable for the production of construction materials. A brief overview of the generation and characteristics of each waste is reported, accompanied by identification of opportunities for the use of alkali-activation technology for their valorisation and/or management

    Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders

    Full text link
    Geopolymers simultaneously containing two waste materials have been developed: fluid catalytic cracking catalyst (FCC) as mineral admixture and rice husk ash (RHA) for preparing an alkaline activator. Alkaline activators were prepared by refluxing aqueous mixtures of ground or original RHA with NaOH. All mortars with alkaline activator containing RHA show compressive strength (cured at 65 °C for 1 day) in the range of 31 41 MPa, which is similar to control mortar prepared using an equivalent mixture of NaOH and water glass. Refluxing times between 30 and 240 min yielded good performance mortars. This new way of valorisation would imply economic and environmental benefits in geopolymer production.GEOCEDEM Project BIA 2011-26947 was financed by Spanish Government, Project 3018/2009 was financed by Generalitat Valenciana, Project AP/35235/11 was financed by AECID, COMBURES Project was financed by Centro de Cooperacion al Desarrollo de la Universitat Politecnica de Valencia ADSIDEO COOPERACIO and OMYA Clariana S.A. and Maicerias Espanolas DACSA S.A. supplied FCC and RHA samples respectively.Bouzón, N.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Soriano Martínez, L.; Mitsuuchi Tashima, M.; Monzó Balbuena, JM. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters. 115:72-74. https://doi.org/10.1016/j.matlet.2013.10.001S727411

    Effect of nanosilica-based activators on the performance of an alkali-activated fly ash

    Full text link
    This paper assesses the effect of the use of an alternative activator based on nanosilica/MOH (M = K+ or Na+) blended solutions on the performance of alkali-activated fly ash binders. Binders produced with commercial silicate activators display a greater degree of reaction, associated with increased contents of geopolymer gel; however, mortars produced with the alternative nanosilica-based activators exhibited lower water demand and reduced permeability, independent of the alkali cation used. Na-based activators promote higher compressive strength compared with K-based activators, along with a refined pore structure, although K-activated samples exhibit reduced water demand. Zeolite type products are the major crystalline phases formed within these binders. A wider range of zeolites is formed when using commercial silicate solutions compared with the alternative activators. These results suggest that there are variations in the availability of Si in the system, and consequently in the alkalinity, depending on the silicate source in the activator, which is important in determining the nanostructure of the geopolymer gel.This study was sponsored by the Ministerio de Ciencia e Innovacion of Spain (Project GEORES MAT2010-19934 and research scholarship BES-2008-002440), European regional development fund (FEDER), and the Universitat Politecnica de Valencia (Spain). The participation of SAB and JLP was funded by the Australian Research Council (ARC), including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC. A special acknowledgement is also due to the Centre of Electron Microscopy of the Universitat Politecnica de Valencia and Pedro Garces from the Universidad de Alicante for support in some experiments.Rodriguez Martinez, ED.; Bernal, SA.; Provis, JL.; Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Borrachero Rosado, MV. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash. Cement and Concrete Composites. 35(1):1-11. doi:10.1016/j.cemconcomp.2012.08.025S11135

    PORTLAND CEMENT CONTAINING FLY ASH, EXPANDED PERLITE, AND PLASTICIZER FOR MASONRY AND PLASTERING MORTARS

    No full text

    ปัจจัยของการแทนที่เอฟจีดียิปซัมและอัตราส่วนของสารละลายด่างต่อกำลังรับแรงอัดและโครงสร้างทางจุลภาคของเถ้าลอยจีโอพอลิเมอร์Factors of FGD-gypsum Replacement and Alkaline Solution Ratio on Compressive Strength and Microstructure of Fly Ash Geopolymer

    No full text
    งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาปัจจัยของการแทนที่เอฟจีดียิปซั่มต่อกำลังรับแรงอัดและโครงสร้างทางจุลภาคของเถ้าลอยจีโอโพลิเมอร์ โดยการใช้เอฟจีดียิปซั่มแทนที่เถ้าลอยในปริมาณร้อยละ 0, 10, 20 และ 30 โดยน้ำหนักวัสดุประสาน สารละลายด่างที่ใช้ในการเกิดปฏิกิริยา ได้แก่ สารละลายโซเดียมซิลิเกตและสารละลายโซเดียมไฮดรอกไซด์เข้มข้น 10 โมลาร์ โดยแปรผันอัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์เท่ากับ 1.0, 1.5, 2.0 และ 2.5 โดยน้ำหนัก อัตราส่วนของเหลวต่อวัสดุประสานเท่ากับ 0.60 และบ่มที่อุณหภูมิห้องทุกอัตราส่วนผสม ผลการทดสอบ พบว่า ระยะเวลาการก่อตัวของเถ้าลอยจีโอโพลิเมอร์มอร์ต้าร์มีแนวโน้มลดลงตามปริมาณการแทนที่เอฟจีดียิปซั่มและอัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์ที่เพิ่มขึ้น การแทนที่เอฟจีดียิปซั่มในเถ้าลอยมีแนวโน้มส่งผลต่อกำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์มากกว่าอัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์ นอกจากนี้ผลการวิเคราะห์องค์ประกอบทางแร่และโครงสร้างทางจุลภาคของเถ้าลอยจีโอโพลิเมอร์ผสมเอฟจีดียิปซั่มเมื่อแปรผันอัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์สอดคล้องกับผลการทดสอบกำลังอัดของเถ้าลอยจีโอโพลิเมอร์ จากผลการทดสอบข้างต้นสามารถสรุปได้ว่าปริมาณการใช้เอฟจีดียิปซั่มในเถ้าลอยร้อยละ 10 และอัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์เท่ากับ 1.0 และ 1.5 เป็นอัตราส่วนที่เหมาะสมต่อการพัฒนากำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์จากเถ้าลอยผสมเอฟจีดียิปซั่มThis research aims to study the factors of FGD-gypsum replacement and alkaline solution ratio on the compressive strength and microstructure of fly ash (FA) geopolymer. FGD was used to replace FA at the ratio of 0%, 10%, 20%, and 30% by weight of the binder. The liquid activators were sodium silicate (Na2SiO3) and 10 molar of sodium hydroxide (NaOH) solutions. The differences in Na2SiO3/NaOH ratios at 1.0, 1.5, 2.0, and 2.5 were investigated. The liquid/binder ratio of 0.60 cured at ambient temperature was used in all mixing. Test results showed that the setting time of FA geopolymer mortar tended to decrease with the increasing of FGD replacement and the Na2SiO3/NaOH ratio. Besides, XRD and SEM results demonstrated that they corresponded to compressive strength results of FA geopolymer. According to the above test results, it can be concluded that using 10%FGD activated with Na2SiO3/NaOH ratios at 1.0 and 1.5 were the optimum mixing ratio to develop the compressive strength of FA geopolymer mortar incorporated with FGD-gypsum

    สมบัติทางกายภาพของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์คอนกรีตและคอนกรีตปกติเมื่อใช้เศษคอนกรีตแทนที่หินปูนย่อยMechanical Properties of High-calcium Fly Ash Geopolymer and Normal Concretes Using Recycled Concrete Aggregate Replaced Crushed Limestone

    No full text
    งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาอิทธิพลของการใช้คอนกรีตรีไซเคิลเป็นมวลรวมหยาบในเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์คอนกรีตและคอนกรีตปกติ โดยศึกษาปริมาณการแทนที่คอนกรีตรีไซเคิลในมวลรวมหยาบธรรมชาติร้อยละ 0, 20, 40, 60, 80 และ 100 ที่มีต่อระยะเวลาก่อตัว กำลังอัด มอดุลัสยืดหยุ่น และอัตราส่วนปัวซองของคอนกรีตที่อายุการบ่มเท่ากับ 1 วัน โดยออกแบบส่วนผสมของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์คอนกรีตตามงานวิจัยที่ผ่านมา โดยใช้อัตราส่วนสารละลายต่อวัสดุประสานเท่ากับ 0.50 อัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์เข้มข้น 10 โมลาร์ เท่ากับ 1.0 ส่วนคอนกรีตปกติถูกออกแบบตามมาตรฐาน ACI211.1-91 ผลการทดสอบ พบว่า ระยะเวลาการก่อตัวของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์คอนกรีตและคอนกรีตปกติมีแนวโน้มลดลงตามปริมาณการใช้คอนกรีตรีไซเคิลที่เพิ่มขึ้น ส่วนกำลังอัดและมอดุลัสยืดหยุ่นของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์คอนกรีตมีแนวโน้มเพิ่มขึ้นแต่อย่างไรก็ตามกำลังอัดและมอดุลัสยืดหยุ่นของคอนกรีตปกติมีแนวโน้มลดลงตามปริมาณการใช้คอนกรีตรีไซเคิลที่เพิ่มขึ้น ขณะที่อัตราส่วนปัวซองของทั้งระบบเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์คอนกรีตและคอนกรีตปกติมีแนวโน้มลดลงตามปริมาณคอนกรีตรีไซเคิลในส่วนผสมซึ่งสอดคล้องกับค่าความเครียดอัดที่จุดความเค้นสูงสุดมากขึ้น จากผลการทดสอบข้างต้นสามารถสรุปได้ว่า คอนกรีตรีไซเคิลสามารถใช้ทดแทนมวลรวมหยาบธรรมชาติสำหรับผลิตคอนกรีตได้โดยเฉพาะอย่างยิ่งในระบบของจีโอพอลิเมอร์ This research aims to study the influence of using Recycled Concrete Aggregate (RCA) in high-calcium Fly Ash (FA) geopolymer and normal concretes. The use of RCA to replace Normal Coarse Aggregate (NCA) at the percentage rates of 0, 20, 40, 60, 80, and 100 by weight were studied. The effects of using RCA in both high-calcium FA geopolymer and normal concretes on setting time, compressive strength, elastic modulus, and Poisson’s ratio at curing time of 1 day were tested. In this work, the mix proportions of high-calcium FA geopolymer concrete were based on the previous work. The alkaline solution/binder ratio of 0.50 and sodium silicate solution/10M sodium hydroxide solution ratio of 1.0 were used. For the normal concrete, it was based on the ACI 211.1-91 for designing its mix proportion. The test results revealed that the setting time of high-calcium FA geopolymer and normal concretes tended to decrease with increasing RCA content. Compressive strength and elastic modulus high-calcium FA geopolymer concrete tended to increase; however, they tended to decrease in the normal concrete system. While Poisson’s ratio of both high-calcium FA geopolymer and normal concretes tended to decrease with increasing RCA content in the mixture. The outcomes correspond to the strain at peak stress values that was increased. From the test results above, it can be concluded that the RCA can be used as the coarse aggregate for making concrete, especially in the geopolymer system

    คุณสมบัติเชิงกลของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์ผสมนาโนซิลิกาที่มีขนาดแตกต่างกันMechanical Properties of High-calcium Fly Ash Geopolymer with Nano-SiO2 Particle Sizes

    No full text
    งานวิจัยนี้นำเสนอการใช้นาโนซิลิกาที่มีขนาดอนุภาคแตกต่างกันเป็นสารผสมเพิ่มต่อคุณสมบัติเชิงกลของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์เพสต์ นาโนซิลิกาถูกเพิ่มเข้าไปในเถ้าลอยแคลเซียมสูงร้อยละ 0, 1, 2 และ 3 โดยน้ำหนักของวัสดุประสาน โดยใช้สารละลายโซเดียมซิลิเกตและสารละลายโซเดียมไฮดรอกไซด์เป็นตัวทำปฏิกิริยาในส่วนผสม และใช้ความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์เท่ากับ 10 โมลาร์ อัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดรอกไซด์เท่ากับ 2.0 อัตราส่วนของเหลวต่อวัสดุประสานเท่ากับ 0.60 และบ่มที่อุณหภูมิห้องทุกอัตราส่วนผสม โดยทำการทดสอบระยะเวลาก่อตัว กำลังรับแรงอัด กำลังรับแรงดัด มอดุลัสยืดหยุ่น และกำลังรับแรงเฉือนอัดของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์เพสต์ ผลการทดสอบแสดงให้เห็นว่า ระยะเวลาการก่อตัวมีแนวโน้มลดลงตามปริมาณการใช้นาโนซิลิกาเป็นสารผสมเพิ่มที่เพิ่มขึ้น กำลังอัด กำลังดัด มอดุลัสยืดหยุ่น และกำลังรับแรงเฉือนอัดของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์เพสต์มีแนวโน้มเพิ่มขึ้นตามปริมาณการใช้นาโนซิลิกาจนถึงปริมาณการใช้ที่เหมาะสมยกเว้นนาโนซิลิกาที่มีขนาด 150 นาโนเมตรซึ่งผลการทดสอบแสดงให้เห็นว่า นาโนซิลิกาที่มีขนาด 150 นาโนเมตร ร้อยละ 3 ยังคงสามารถพัฒนาคุณสมบัติเชิงกลของเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์เพสต์ได้จากผลการทดสอบข้างต้นสามารถสรุปได้ว่า การใช้นาโนซิลิกาที่มีขนาด 12 และ 80 นาโนเมตร ร้อยละ 2 เป็นปริมาณการใช้ที่เหมาะสม ขณะที่การใช้นาโนซิลิกาที่มีขนาด 150 นาโนเมตร ร้อยละ 3 เป็นปริมาณการใช้ที่เหมาะสมสำหรับการใช้เป็นสารผสมเพิ่มในเถ้าลอยแคลเซียมสูงจีโอพอลิเมอร์เพสต์This article presents effects of the use of nano-SiO2 with different particle sizes as an additive on mechanical properties of high-calcium fly ash (FA) geopolymer paste. Nano-SiO2 with different particle sizes were added in high-calcium FA at the rates of 0%, 1%, 2%, and 3% by weight of the binder. Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions were used as the liquid portion in mixtures. The 10 molar NaOH solution, Na2SiO3-to-NaOH ratio of 2.0, liquid alkali-to-binder ratio of 0.60, and curing at ambient temperature were used in all mixtures. The setting time, compressive strength, flexural strength, modulus of elasticity, and slant shear bond strength of high-calcium FA geopolymer paste were studied. Test results indicated that the setting times of geopolymer paste tended to decrease with increasing nano-SiO2 content. Compressive strength, flexural strength, modulus of elasticity and slant shear bond strength of high-calcium FA geopolymer paste tended to increase with an increase in nano-SiO2 content up to 2% by weight and then gradually decrease except nano-SiO2 with particle size of 150 nm. It was found that using 3% nano-SiO2 particle size of 150 nm could develop the mechanical properties of highcalcium FA geopolymer paste. It could be concluded that using 2%nano-SiO2 with particle size of 12 and 80 nm and 3%nano-SiO2 with particle size of 150 nm were the optimum levels for use as an additive in high-calcium FA geopolymer paste
    corecore