356 research outputs found
Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes
Background: miRNA profiling performed in myogenic cells and biopsies from skeletal muscles has previously identified miRNAs involved in myogenesis. Results: Here, we have performed miRNA transcriptome profiling in human affinity-purified CD56+ myoblasts induced to differentiate in vitro. In total, we have identified 60 miRNAs differentially expressed during myogenic differentiation. Many were not known for being differentially expressed during myogenic differentiation. Of these, 14 (miR-23b, miR-28, miR-98, miR-103, miR-107, miR-193a, miR-210, miR-324-5p, miR-324-3p, miR-331, miR-374, miR-432, miR-502, and miR-660) were upregulated and 6 (miR-31, miR-451, miR-452, miR-565, miR-594 and miR-659) were downregulated. mRNA transcriptome profiling performed in parallel resulted in identification of 6,616 genes differentially expressed during myogenic differentiation. Conclusions: This simultaneous miRNA/mRNA transcriptome profiling allowed us to predict with high accuracy target genes of myogenesis-related microRNAs and to deduce their functions
Inhibition of Chk1 Kills Tetraploid Tumor Cells through a p53-Dependent Pathway
Tetraploidy constitutes an adaptation to stress and an intermediate step between euploidy and aneuploidy in oncogenesis. Tetraploid cells are particularly resistant against genotoxic stress including radiotherapy and chemotherapy. Here, we designed a strategy to preferentially kill tetraploid tumor cells. Depletion of checkpoint kinase-1 (Chk1) by siRNAs, transfection with dominant-negative Chk1 mutants or pharmacological Chk1 inhibition killed tetraploid colon cancer cells yet had minor effects on their diploid counterparts. Chk1 inhibition abolished the spindle assembly checkpoint and caused premature and abnormal mitoses that led to p53 activation and cell death at a higher frequency in tetraploid than in diploid cells. Similarly, abolition of the spindle checkpoint by knockdown of Bub1, BubR1 or Mad2 induced p53-dependent apoptosis of tetraploid cells. Chk1 inhibition reversed the cisplatin resistance of tetraploid cells in vitro and in vivo, in xenografted human cancers. Chk1 inhibition activated p53-regulated transcripts including Puma/BBC3 in tetraploid but not in diploid tumor cells. Altogether, our results demonstrate that, in tetraploid tumor cells, the inhibition of Chk1 sequentially triggers aberrant mitosis, p53 activation and Puma/BBC3-dependent mitochondrial apoptosis
Indicativos de resiliĂŞncia familiar em famĂlias de crianças com sĂndrome de Down
Resumo Este estudo objetiva caracterizar e analisar a resiliĂŞncia familiar em famĂlias de crianças com sĂndrome de Down. Participaram cinco famĂlias compostas por pai, mĂŁe e filhos, tendo um deles a sĂndrome. Os instrumentos utilizados foram o Questionário de Caracterização do Sistema Familiar, o qual foi respondido pela mĂŁe; o Inventário de EstratĂ©gias de Coping, o qual ambos os genitores responderam separadamente; e entrevistas com genitores e filhos com desenvolvimento tĂpico. As famĂlias foram visitadas em trĂŞs momentos. Os resultados indicam que diante de eventos ruins, principalmente, dos problemas de saĂşde relacionados Ă sĂndrome de Down, as famĂlias apresentam capacidade de extrair sentido da adversidade, bem como de se organizar de forma cooperativa, com diálogo e estreitamento dos vĂnculos. Em todas as famĂlias foram identificados indicativos de resiliĂŞncia familiar. A estratĂ©gia de coping mais utilizada Ă© a reavaliação positiva, enquanto a menos utilizada Ă© fuga-esquiva
New Noncovalent Inhibitors of Penicillin-Binding Proteins from Penicillin-Resistant Bacteria
BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.Eur-Intafa
Identification of the Rheumatoid Arthritis Shared Epitope Binding Site on Calreticulin
Background: The rheumatoid arthritis (RA) shared epitope (SE), a major risk factor for severe disease, is a five amino acid motif in the third allelic hypervariable region of the HLA-DRb chain. The molecular mechanisms by which the SE affects susceptibility to – and severity of- RA are unknown. We have recently demonstrated that the SE acts as a ligand that interacts with cell surface calreticulin (CRT) and activates innate immune signaling. In order to better understand the molecular basis of SE-RA association, here we have undertaken to map the SE binding site on CRT. Principal Findings: Surface plasmon resonance (SPR) experiments with domain deletion mutants suggested that the SE binding site is located in the P-domain of CRT. The role of this domain as a SE-binding region was further confirmed by a sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azido-benzamido) hexanoamido] ethyl-1,3-dithiopropionate (sulfo-SBED) photoactive cross-linking method. In silico analysis of docking interactions between a conformationally intact SE ligand and the CRT P-domain predicted the region within amino acid residues 217–224 as a potential SE binding site. Site-directed mutagenesis demonstrated involvement of residues Glu 217 and Glu 223- and to a lesser extent residue Asp 220- in cell-free SPR-based binding and signal transduction assays. Significance: We have characterized here the molecular basis of a novel ligand-receptor interaction between the SE and CRT. The interaction represents a structurally and functionally well-defined example of cross talk between the adaptive an
The Minimal Domain of Adipose Triglyceride Lipase (ATGL) Ranges until Leucine 254 and Can Be Activated and Inhibited by CGI-58 and G0S2, Respectively
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated
Genome wide SNP comparative analysis between EGFR and KRAS mutated NSCLC and characterization of two models of oncogenic cooperation in non-small cell lung carcinoma
<p>Abstract</p> <p>Background</p> <p>Lung cancer with EGFR mutation was shown to be a specific clinical entity. In order to better understand the biology behind this disease we used a genome wide characterization of loss of heterozygosity and amplification by Single Nucleotide Polymorphism (SNP) Array analysis to point out chromosome segments linked to <it>EGFR </it>mutations. To do so, we compared genetic profiles between <it>EGFR </it>mutated adenocarcinomas (ADC) and <it>KRAS </it>mutated ADC from 24 women with localized lung cancer.</p> <p>Results</p> <p>Patterns of alterations were different between <it>EGFR </it>and <it>KRAS </it>mutated tumors and specific chromosomes alterations were linked to the <it>EGFR </it>mutated group. Indeed chromosome regions 14q21.3 (p = 0.027), 7p21.3-p21.2 (p = 0.032), 7p21.3 (p = 0.042) and 7p21.2-7p15.3 (p = 0.043) were found significantly amplified in EGFR mutated tumors. Within those regions 3 genes are of special interest <it>ITGB8</it>, <it>HDAC9 </it>and <it>TWIST1</it>. Moreover, homozygous deletions at <it>CDKN2A </it>and LOH at <it>RB1 </it>were identified in <it>EGFR </it>mutated tumors. We therefore tested the existence of a link between EGFR mutation, CDKN2A homozygous deletion and cyclin amplification in a larger series of tumors. Indeed, in a series of non-small-cell lung carcinoma (n = 98) we showed that homozygous deletions at <it>CDKN2A </it>were linked to <it>EGFR </it>mutations and absence of smoking whereas cyclin amplifications (<it>CCNE1 </it>and <it>CCND1</it>) were associated to <it>TP53 </it>mutations and smoking habit.</p> <p>Conclusion</p> <p>All together, our results show that genome wide patterns of alteration differ between <it>EGFR </it>and <it>KRAS </it>mutated lung ADC, describe two models of oncogenic cooperation involving either <it>EGFR </it>mutation and <it>CDKN2A </it>deletion or cyclin amplification and <it>TP53 </it>inactivating mutations and identified new chromosome regions at 7p and 14q associated to EGFR mutations in lung cancer.</p
Structural Basis of Cytotoxicity Mediated by the Type III Secretion Toxin ExoU from Pseudomonas aeruginosa
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action
- …