17 research outputs found

    A kĂŒlönleges szakiskolĂĄk

    Get PDF
    Additional file 1. Supplementary information on European nightjars. Data on individual birds (Table S1), stopover duration (Table S2) and definition of high-quality positions (Fig. S1)

    Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales

    Get PDF
    Timing of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of timing of movement activity among species using six temporal variables: start of activity relative to sunrise, end of activity relative to sunset, relative speed at midday, number of movement bouts, bout duration and proportion of active daytime hours. We test for the influence of flight mode and foraging habitat on the timing of movement activity across avian guilds. We used 64 570 days of GPS movement data collected between 2002 and 2019 for local (non‐migratory) movements of 991 birds from 49 species, representing 14 orders. Dissimilarity among daily activity patterns was best explained by flight mode. Terrestrial soaring birds began activity later and stopped activity earlier than pelagic soaring or flapping birds. Broad‐scale foraging habitat explained less of the clustering patterns because of divergent timing of active periods of pelagic surface and diving foragers. Among pelagic birds, surface foragers were active throughout all 24 hrs of the day while diving foragers matched their active hours more closely to daylight hours. Pelagic surface foragers also had the greatest daily foraging distances, which was consistent with their daytime activity patterns. This study demonstrates that flight mode and foraging habitat influence temporal patterns of daily movement activity of birds.We thank the Nature Conservancy, the Bailey Wildlife Foundation, the Bluestone Foundation, the Ocean View Foundation, Biodiversity Research Institute, the Maine Outdoor Heritage Fund, the Davis Conservation Foundation and The U.S. Department of Energy (DE‐EE0005362), and the Darwin Initiative (19-026), EDP S.A. ‘Fundação para a Biodiversidade’ and the Portuguese Foundation for Science and Technology (FCT) (DL57/2019/CP 1440/CT 0021), Enterprise St Helena (ESH), Friends of National Zoo Conservation Research Grant Program and Conservation Nation, ConocoPhillips Global Signature Program, Maryland Department of Natural Resources, Cellular Tracking Technologies and Hawk Mountain Sanctuary for providing funding and in-kind support for the GPS data used in our analyses

    Applicability of the “Frame of Reference” approach for environmental monitoring of offshore renewable energy projects

    Get PDF
    This paper assesses the applicability of the Frame of Reference (FoR) approach for the environmental monitoring of large-scale offshore Marine Renewable Energy (MRE) projects. The focus is on projects harvesting energy from winds, waves and currents. Environmental concerns induced by MRE projects are reported based on a classification scheme identifying stressors, receptors, effects and impacts. Although the potential effects of stressors on most receptors are identified, there are large knowledge gaps regarding the corresponding (positive and negative) impacts. In that context, the development of offshore MRE requires the implementation of fit-for-purpose monitoring activities aimed at environmental protection and knowledge development. Taking European legislation as an example, it is suggested to adopt standardized monitoring protocols for the enhanced usage and utility of environmental indicators. Towards this objective, the use of the FoR approach is advocated since it provides guidance for the definition and use of coherent set of environmental state indicators. After a description of this framework, various examples of applications are provided considering a virtual MRE project located in European waters. Finally, some conclusions and recommendations are provided for the successful implementation of the FoR approach and for future studies.info:eu-repo/semantics/publishedVersio

    Innovative Visualizations Shed Light on Avian Nocturnal Migration

    Get PDF
    We acknowledge the support provided by COST–European Cooperation in Science and Technology through the Action ES1305 ‘European Network for the Radar Surveillance of Animal Movement’ (ENRAM) in facilitating this collaboration. We thank ENRAM members and researchers attending the EOU round table discussion ‘Radar aeroecology: unravelling population scale patterns of avian movement’ for feedback on the visualizations. We thank Arie Dekker for his feedback as jury member of the bird migration visualization challenge & hackathon hosted at the University of Amsterdam, 25–27 March 2015. We thank Willem Bouten and Kevin Winner for discussion of methodological design. We thank Kevin Webb and Jed Irvine for assistance with downloading, managing, and reviewing US radar data. We thank the Royal Meteorological Institute of Belgium for providing weather radar data.Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.Yeshttp://www.plosone.org/static/editorial#pee

    Avian collision risk at an offshore wind farm

    No full text
    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision

    Barriers to movement: impacts of wind farms on migrating birds

    No full text
    Advances in technology and engineering are enhancing the contribution that wind power makes to renewable energy generation. Wind farms, both operational and in planning, can be expected to impact negatively on wildlife populations, particularly birds. We propose a novel approach to assess the impacts through the energetic costs of avoidance behaviour for a long-distance, migratory seaduck. Flight trajectories were recorded using surveillance radar at a Danish offshore wind farm with emphasis placed on the 200 000+ migrating common eiders that pass through the area annually. Minimum distance to wind farm and curvature of trajectories were compared pre- and post-construction. Additional costs of the avoidance response were estimated using an avian energetic model. The curvature of eider trajectories was greatest post-construction and within 500 m of the wind farm, with a median curvature significantly greater than pre-construction, suggesting that the birds adjusted their flight paths in the presence of the wind farm. Additional distance travelled as a consequence of the wind farm's presence was ca. 500 m and trivial compared with the total costs of a migration episode of 1400 km. However, construction of further wind farms along the migration route could have cumulative effects on the population, especially when considered in combination with other human actions

    Data from: Patterns of migrating soaring migrants indicate attraction to marine wind farms

    No full text
    Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed
    corecore