247 research outputs found

    Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling

    Get PDF
    In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.We acknowledge financial support from the Engineering and Physical Sciences Research Council of the U.K. (EPSRC). J.M.R. and M.T. thank the Winton Programme for the Physics of Sustainability (University of Cambridge). L.M.P.-O. thanks the Cambridge Home European Scheme for financial support. L.M.P.-O. and J.P.H.R. also thank the Nano Doctoral Training Center (NanoDTC) of the EPSRC for financial support. M.A.-J. thanks Nyak Technology Limited for a PhD scholarship. F.D. acknowledges funding from a Herchel Smith Research Fellowship

    Animal husbandry between the Roman times and the High Middle Ages in central Europe : a biometrical analysis of cattle, sheep and pig

    Get PDF
    This paper presents a meta-analysis of biometrical data of cattle (Bos taurus), sheep (Ovis aries), and pig (Sus domesticus), with a diachronic, long-term approach (first–twelfth centuries AD) and at a large regional scale (Switzerland and adjacent areas of France), with the aim of looking at changes in animal husbandry during the transition between Roman times and the Early Middle Ages. With this in mind, a comprehensive biometrical analysis is carried out, on the basis of the log-ratio technique (or logarithmic size index — LSI). The results show an increase of the size of domesticates during the Late Roman period, as well as a long period of size decrease in the subsequent centuries. The possible reasons behind this size decrease are discussed, focusing on three factors: a genetic change, less direct control over feeding and breeding, and changing patterns of herd sex ratios. We argue that these changes should be seen as an efficient adaptation of animal husbandry strategies to broader social, economic, and political transformations

    Increasing organic solar cell efficiency with polymer interlayers

    Get PDF
    We demonstrate how organic solar cell efficiency can be increased by introducing a pure polymer interlayer between the PEDOT:PSS layer and the polymer: fullerene blend. We observe an increase in device efficiency with three different material systems over a number of devices. Using both electrical characterization and numerical modeling we show that the increase in efficiency is caused by optical absorption in the pure polymer layer and hence efficient charge separation at the polymer bulkheterojunction interface

    Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Metal halide perovskites have emerged as exceptional semiconductors for optoelectronic applications. Substitution of the monovalent cations has advanced luminescence yields and device efficiencies. Here, we control the cation alloying to enhance optoelectronic performance through alteration of the charge carrier dynamics in mixed-halide perovskites. In contrast to single-halide perovskites, we find high luminescence yields for photoexcited carrier densities far below solar illumination conditions. Using time-resolved spectroscopy we show that the charge carrier recombination regime changes from second to first order within the first tens of nanoseconds after excitation. Supported by microscale mapping of the optical bandgap, electrically gated transport measurements and first-principles calculations, we demonstrate that spatially varying energetic disorder in the electronic states causes local charge accumulation, creating p- and n-type photodoped regions, which unearths a strategy for efficient light emission at low charge-injection in solar cells and light-emitting diodes.S.F. acknowledges funding from the Studienstiftung des deutschen Volkes and EPSRC, as well as support from the Winton Programme for the Physics of Sustainability. S.M. acknowledges funding from an EPSRC studentship. M.A.-J. thanks Nava Technology Limited, Cambridge Materials Limited and EPSRC (grant number: EP/M005143/1) for their funding and technical support. S.P.S. acknowledges funding from the Royal Society Newton Fellowship and EPSRC through a program grant (EP/M005143/1). T.A.S.D. acknowledges the National University of Ireland (NUI) for a Travelling Studentship and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962). K.F. acknowledges funding from a George and Lilian Schiff Foundation Studentship, an EPSRC studentship and a scholarship from the Winton Programme for the Physics of Sustainability. E.R. acknowledges funding from an ERC starting grant (no. 804523). R.H.F. acknowledges support from the Simons Foundation (grant 601946). Research work in Mons was supported by the Fonds de la Recherche Scientifique de Belgique - Fund for Scientific Research (F.R.S.-FNRS) and the EU Marie-Curie IEF project ‘DAEMON’. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI). D.B. is an FNRS Research Director. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962), the Royal Society and Tata Group (UF150033). F.D. acknowledges funding from the Winton Programme for the Physics of Sustainability

    Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets

    Get PDF
    Room-temperature photocurrent measurements in two-dimensional (2D) inorganic-organic perovskite devices reveal that excitons strongly contribute to the photocurrents despite possessing binding energies over 10 times larger than the thermal energies. The p-type (C₆H₉C₂H₄NH₃)₂PbI₄ liberates photocarriers at metallic Schottky aluminum contacts, but incorporating electron- and hole-transport layers enhances the extracted photocurrents by 100-fold. A further 10-fold gain is found when TiO₂ nanoparticles are directly integrated into the perovskite layers, although the 2D exciton semiconducting layers are not significantly disrupted. These results show that strong excitonic materials may be useful as photovoltaic materials despite high exciton binding energies and suggest mechanisms to better understand the photovoltaic properties of the related three-dimensional perovskites.This work was supported by EPSRC Grants EP/K028510/1, EP/G060649/1, EP/G037221/1, EP/H007024/1, EP/L027151/1, and EP/L015978/1, the Cambridge NanoDTC, and ERC LINASS 320503

    Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.

    Get PDF
    Organometallic lead-halide perovskite-based solar cells now approach 18% efficiency. Introducing a mixture of bromide and iodide in the halide composition allows tuning of the optical bandgap. We prepare mixed bromide-iodide lead perovskite films CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 1) by spin-coating from solution and obtain films with monotonically varying bandgaps across the full composition range. Photothermal deflection spectroscopy, photoluminescence, and X-ray diffraction show that following suitable fabrication protocols these mixed lead-halide perovskite films form a single phase. The optical absorption edge of the pure triiodide and tribromide perovskites is sharp with Urbach energies of 15 and 23 meV, respectively, and reaches a maximum of 90 meV for CH3NH3PbI1.2Br1.8. We demonstrate a bromide-iodide lead perovskite film (CH3NH3PbI1.2Br1.8) with an optical bandgap of 1.94 eV, which is optimal for tandem cells of these materials with crystalline silicon devices.We acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme (Cambridge) for the Physics of Sustainability. THT acknowledges funding from Cambridge Australia Scholarships and the Cambridge Commonwealth Trust. D.C. acknowledges support from St. John's College Cambridge and the Winton Programme (Cambridge) for the Physics of Sustainability.This is the final published version. It's also available at: http://pubs.acs.org/doi/abs/10.1021/jz501332v

    Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study

    Get PDF
    In myelodysplastic syndromes (MDS), health-related quality of life (HRQoL) represents a relevant patient-reported outcome, which is essential in individualized therapy planning. Prospective data on HRQoL in lower-risk MDS remain rare. We assessed HRQOL by EQ-5D questionnaire at initial diagnosis in 1690 consecutive IPSS-Low/Int-1 MDS patients from the European LeukemiaNet Registry. Impairments were compared with age- and sex-matched EuroQol Group norms. A significant proportion of MDS patients reported moderate/severe problems in the dimensions pain/discomfort (49.5%), mobility (41.0%), anxiety/depression (37.9%), and usual activities (36.1%). Limitations in mobility, self-care, usual activities, pain/discomfort, and EQ-VAS were significantly more frequent in the old, in females, and in those with high co-morbidity burden, low haemoglobin levels, or red blood cells transfusion need (

    Bright light-emitting diodes based on organometal halide perovskite.

    Get PDF
    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.This is the author accepted manuscript and will be under embargo until 3/2/15. The final version is published in Nature Nanotechnology: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.149.html
    • …
    corecore