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Enhancing photoluminescence yields in lead
halide perovskites by photon recycling
and light out-coupling
Johannes M. Richter1, Mojtaba Abdi-Jalebi1, Aditya Sadhanala1, Maxim Tabachnyk1, Jasmine P. H. Rivett1,
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In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair

to photon to electron–hole pair at open circuit under solar illumination. This can lead to a

significant reduction in the external photoluminescence yield from the internal yield. Here we

show that, for an internal yield of 70%, we measure external yields as low as 15% in planar

films, where light out-coupling is inefficient, but observe values as high as 57% in films on

textured substrates that enhance out-coupling. We analyse in detail how externally measured

rate constants and photoluminescence efficiencies relate to internal recombination processes

under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate

equation to relate radiative and non-radiative recombination events to measured photo-

luminescence efficiencies. We conclude that the use of textured active layers has the ability

to improve power conversion efficiencies for both LEDs and solar cells.
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O
rganic–inorganic lead halide perovskites have emerged as
disruptive materials for photovoltaics, with power
conversion efficiencies recently exceeding 20% (ref. 1).

Their exceptional performance has been attributed to efficient
free charge generation2,3, long carrier lifetimes4, long excitation
transport lengths5,6 and low apparent trap densities.
Furthermore, the optical and electrical properties of lead halide
perovskites can be tuned by their chemical composition. The
optical absorption onset can be shifted across the visible to
near-infrared region by changing the halide content from pure
tri-iodide (band edge around 770 nm or 1.6 eV) to tri-bromide
(band edge around 530 nm or 2.3 eV)7,8. The investigation
of the semiconducting properties of this material class has been
driven forward by spectroscopic measurements9–11. Transient
photoluminescence (PL) experiments have been used to study the
photo-physical and semiconducting properties of lead halide
perovskites. It was found that the recombination processes of
photo-excited charge carriers are strongly fluence-dependent2,10,12

and can give efficient radiative recombination from a bimolecular
process. The recent demonstration of laser cooling13 and the
excellent radiative efficiencies of nano-crystalline samples14

indicate the general possibility to achieve high radiative
efficiencies in these materials. However, these findings are in
conflict with reported, significantly lower external radiative
efficiencies in thin film samples, which have been discussed in
terms of non-radiative losses at defects and surfaces. This conflict
raises the question, in how far externally measured radiative
efficiencies give information on the internal recombination
processes, or if these efficiencies are affected by other processes,
such as light out-coupling, which is expected to be hindered by the
relatively high refractive index of nB2.7 (refs 15,16). The
understanding of photonic effects is crucial for the efficient
operation of light-emitting devices17,18 and the ability to achieve
high external efficiencies has been a crucial factor to push the
power conversion efficiencies of single-junction photovoltaics19.
Moreover, lead halide perovskites show sharp band edges and
strong photoluminescence, which are the criteria required for
photon recycling, that is, the re-absorption of radiatively
recombining photo-generated charge pairs to regenerate an
excitation. Our group has recently shown that photon recycling
occurs in lead halide perovskites20. As developed below, this effect
strongly affects externally observed recombination constants and,
together with the high refractive index of these materials, leads to a
significant difference between internally and externally measured
photoluminescence quantum yields (PLQEs).

Here we investigate the recombination processes in lead halide
perovskite thin films by quantitatively tracking photo-excited
charge carrier densities with transient absorption (TA). In
contrast to previous reports12,21,22, we can quantify the

radiative fraction of the recombination rate by combining TA
measurements with transient PL measurements. We find mono-,
bi- and tri-molecular recombination regimes, of which only the
bimolecular one is radiative. We show that photon recycling
effects have to be taken into account to accurately determine
intrinsic recombination coefficients, and demonstrate that
internal PL quantum yields significantly exceed externally
measured yields in thin film samples. By optimizing the light
out-coupling with photonic structures, we recover the high
internal efficiencies in external measurements, demonstrating the
intrinsically efficient radiative recombination in lead halide
perovskites.

Results
Enhancing photoluminescence yields by light out-coupling. We
prepared thin films of CH3NH3PbI3, CH3NH3PbI3-xClx (that is,
PbCl2 used in preparation) and CH3NH3PbBr3 on glass sub-
strates. All films were deposited in a single step spin coating
process of a precursor solution based on methylammonium
halide mixed with lead acetate or lead chloride in DMF.
Absorption and PL emission spectra of the films can be seen in
Fig. 1a. All films show long-term photostability under the
investigated fluences for both pulsed and continuous wave
excitation. We did not observe a light soaking effect which is an
increase in luminescence intensity over minutes of illumination23

but reach high PLQEs within the turn-on time of the laser. We
measure the external PLQEs of thin films of these three material
compositions under continuous wave (CW) laser excitation
at 532 nm (407 nm for bromide perovskite) and measure 5%,
20% and 15% for CH3NH3PbI3, CH3NH3PbI3� xClx and
CH3NH3PbBr3, respectively, comparable to literature values of
perovskite thin films24,25. To investigate the importance of light
out-coupling and photon recycling on the externally measured
PLQEs, we change the planar sample structure by depositing
perovskite films on a textured glass substrate with structures on
the length scale of 100 nm to 1mm (for characterization see
Supplementary Figs 1 and 2). In these samples, for the iodide–
chloride perovskite, we measure an external PLQE of 57% in the
structured film, compared with 20% in the planar reference film,
which was made from the same precursor solution on an
unstructured substrate. For the iodide perovskite, the external
PLQE increases by a factor of 5 from 5 to 27%. In addition, we
deposited silicon dioxide microspheres (1 mm diameter, Sigma
Aldrich) on the glass substrate before spin coating the perovskite
film on top of these ‘microlenses’ that leads to a rise of the
external PLQE for the iodide–chloride film to 39% and for
the iodide film to 17%. Figure 1b summarizes the PLQEs
for iodide–chloride perovskite on different substrates. This
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Figure 1 | Radiative efficiency of perovskite films. (a) Steady-state absorption spectra measured with photothermal deflection spectroscopy (solid lines)

and photoluminescence spectra (dashed lines) for MAPbX3 (X¼ I, Br, I1� xClx). (b) External PLQEs for MAPbI3� xClx on different substrates. The film

on a textured substrate shows an external PLQE of 57%, three times higher than the planar film with 20% (indicated by dashed line).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13941

2 NATURE COMMUNICATIONS | 7:13941 | DOI: 10.1038/ncomms13941 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


demonstrates that light out-coupling determines the external
luminescence intensity of lead halide perovskites.

Time-resolved spectroscopy identifies recombination mechanisms.
To further understand how recombination and photon recycling
affects the external PLQEs, we study the time-resolved
carrier dynamics in lead halide perovskites by performing
transient absorption (TA) and transient photoluminescence (PL)

measurements on planar films of all three material compositions.
To minimize carrier diffusion effects5 on the measured
recombination processes, we chose excitation spot sizes larger
than 200 mm.

Typical TA spectra can be found in Supplementary Fig. 4a that
have been described in detail elsewhere9,26,27. We spectrally
integrate over the ground state bleach of the TA spectra (in a
range of 100 meV over the peak at 1.65 eV for iodide and at
2.35 eV for bromide perovskite) to get a measure that is
proportional to the excitation density n(t). We confirm that this
is a good measure for the carrier density by showing that the
initial TA signal after excitation is linear in pump power
(Supplementary Fig. 4b). The initial carrier density n0 is
estimated from the absorption and thickness of the films (see
Supplementary Note 1). Figure 2a shows the TA kinetics of iodide
perovskite after pulsed laser excitation for different fluences. For
this graph, the time zero of individual measurements was shifted
along the time axis to match the respective next higher carrier
density. We find that the TA signal decays smoothly over
multiple orders of magnitude. From this, we conclude that the
recombination rate dn

dt ðtÞ only depends on the excitation density
n(t) and is ‘history-independent’28. We find the same result for
bromide and iodide–chloride based methylammonium lead
halide perovskites and in PL measurements (Supplementary
Fig. 3).

We multiply the TA kinetics with the initial carrier density n0

to get a measure for n(t) (see Supplementary Note 1 for estimate
of n0). By taking the time-derivative of the carrier density dn

dt ðtÞ,
and plotting it over the carrier density n(t), we derive carrier
density-dependent recombination rates that can be found in
Fig. 2b–d for all three material compositions. We find that the
recombination rates are higher for the iodide film compared to
the iodide–chloride and bromide film. For all three compositions,
we find different scaling regimes of the recombination rate
with carrier density n. At low carrier densities (no1016 cm� 3)
the rate is linear in carrier density for iodide and bromide
perovskite, while at higher carrier densities we find a quadratic
(n ¼ 1016–1018 cm� 3) and cubic (n41018 cm� 3) dependence.
The monomolecular regime was not resolved in the TA
experiment for the iodide–chloride sample, but was
clearly present in low-fluence transient PL measurements
(Supplementary Fig. 5). We conclude that mono-, bi- and
trimolecular charge carrier recombination pathways are
present in all three perovskite materials and can describe the
recombination rates with the general rate equation

� dn
dt
¼ a � nþ b � n2þ c � n3 ð1Þ

By fitting the recombination rates with this rate equation,
we find the recombination constants reported in Table 1.
We compare the extracted monomolecular constants with the
constants from low-fluence transient PL measurements
(Supplementary Fig. 5) and find a good agreement.

To distinguish between radiative and non-radiative recombi-
nation pathways, we perform transient PL measurements.
Transient photoluminescence is a measure for the radiative part
of the recombination rate

PLðtÞ � dn
dt rad

ðtÞ ð2Þ

Figure 3a shows the setup-limited (time resolution about
1.5 ns), initial PL signal, PL0, for pulsed optical excitation. We
find that the initial PL signal scales quadratically with pump
power and thus carrier density for all three material composi-
tions. In addition, we plot dn

dt rad, which is determined from the
transient PL signal, over the TA signal for the same time delay,
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that is, with time as the intrinsic variable, as seen in Fig. 3b for
MAPbBr3 (other materials in Supplementary Fig. 6). We note that
the PL is proportional to the radiative recombination rate and TA
is proportional to the carrier density. We observe that the
radiative recombination rate scales quadratically with carrier
density and has therefore its origin in a bimolecular process for all
investigated charge carrier densities. We attribute this to a direct
band-to-band transition with a constant bimolecular recombina-
tion constant brad,ext in the investigated fluence regime. This has
been shown before for iodide perovskite2,29 but is still debated for
bromide perovskite where the role of the exciton has to be
clarified. We find that the dominant radiative recombination
channel in bromide perovskite is a band-to-band recombination
rather than an excitonic monomolecular recombination at the
investigated fluences. Interestingly, the radiative rate dn

dt rad tð Þ still
scales quadratically with n in the lower fluence regime, where the
total charge carrier recombination rate dn

dt ðtÞ is dominated by the
monomolecular regime. We therefore conclude that the origin of
the monomolecular recombination is a non-radiative process,
while the radiative recombination is still bimolecular at these
lower fluences (no1016 cm� 3). We did not find evidence for a
radiative monomolecular process in any of the investigated
material compositions over the investigated fluence regime. This
indicates that the properties of the excited states in lead halide
perovskite are dominated by free charge pair behaviour rather
than bound excitons.

Impact of photon recycling on external PLQEs. To understand
the impact of the different recombination pathways on externally
measured PL quantum efficiencies, we perform fluence-
dependent PLQE measurements under pulsed and CW laser

excitation. Figure 4a shows the measured external PLQEs for
bromide perovskite under pulsed excitation (squares). The PLQE
shows a rise at low fluences, peaks around 3� 1017 cm� 3 and
then falls at higher fluences. To understand the fluence
dependence of the PLQE, we have to consider the fluence-
dependent recombination rates, as well as the effects of photon
recycling.

It has been shown in seminal studies of inorganic semicon-
ductors30,31, that emitted PL photons can be re-absorbed and
re-emitted if the photoluminescence and absorption spectra
overlap. Such an effect has been recently shown in lead halide
perovskites20. The effect of this filtering and re-emission can be
substantial if PL photons are trapped in the active layer due to
total internal reflection. Perovskite has a high refractive index
of nD2.7 at the band edge16 leading to an escape cone for
emitted photons at the perovskite-air interface of only
a¼ sin� 1(n)¼ 22�. Above this critical angle, photons will be
trapped in the film and eventually be re-absorbed. By considering
the perovskite-glass and perovskite-air interfaces, we estimate the
escape probability, which is the probability that an emitted
photon will leave the film before re-absorption, to be Zesc¼ 12.7%
for the planar film of iodide perovskite (details in Supplementary
Note 2). This is an upper boundary for the escape probability as
discussed in Supplementary Note 2 providing a lower boundary
(and thus conservative estimate) for the internal PLQE later. We
can then derive an expression for the external PLQE Zext by
writing it as a series over multiple re-absorption events31–33:

Zext ¼ Zesc � Zþ 1� Zescð Þ � Z2 � Zescþ 1� Zescð Þ2�Z3 � Zescþ . . .

¼ Zesc � Z �
X1
k¼0

1� Zescð Þk�Zk ¼ Z � Zesc

1� Zþ Z � Zesc

ð3Þ
where Z is the internal PLQE. Furthermore, the recycling of
photons will affect the radiative recombination constant brad. The
intrinsic recombination constant brad,int will be higher than the
externally measured brad,ext due to a slowing down of the carrier
concentration decay by re-absorption of photons. We can derive
an expression between the two by noting that the change in
carrier density n we observe must be the same internally and
externally, which leads to

brad;ext ¼ brad;int � Zesc ð4Þ
The non-radiative recombination constants will be unaffected

by photon recycling, because non-radiatively recombining
charges cannot be subsequently recycled.

Table 1 | Recombination constants of MAPbX3 planar films
(X¼ I, Br, I1� xClx).

MAPbI3 MAPbI3� xClx MAPbBr3

a (s� 1) from TA 5e6 r5e5 2.5e6
b (cm3 s� 1) 8.1e� 11 7.9e� 11 7.0e� 11
c (cm6 s� 1) 1.1e� 28 1.8e� 28 6e� 29
a (s� 1) from TPL 4.2e6 5.9e5 3.0e6
2 � tPL (ns) 230 1,700 330

Recombination constants were extracted from the recombination rates measured with TA
(Fig. 2). For comparison, the monomolecular recombination constants were also extracted from
low-fluence transient PL measurements.
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We expect the fluence dependent PLQE to be described by /
radiative and total recombination rates according to

Z nð Þ ¼ dn
dt rad

ðnÞ
�

dn
dt
ðnÞ ð5Þ

If we assume that only the bimolecular process is radiative,
we expect

Z nð Þ ¼ brad;int � n2

a � nþ brad;intþ bnon
� �

� n2þ c � n3
ð6Þ

for the internal PLQE. We assume that we have non-radiative
mono-, bi- and trimolecular recombination (with recombination
constants a, bnon and c, respectively) competing with the radiative
bimolecular process (with bimolecular constant brad,int). Under
photon recycling, the external PLQE can be calculated using
equation (3) or by using equation (6) with the external
recombination constant brad,ext instead of brad,int for the radiative
recombination.

Using the recombination constants listed in Table 1, we plot
the computed external PLQE according to equation (6) together
with the experimental PLQE data in Supplementary Fig. 7a
assuming that the bimolecular recombination is purely radiative,
corresponding to bnon¼ 0. We observe that there is a significant
discrepancy between this model and the experimentally observed
PLQEs. We note that this discrepancy is independent of the
estimate for the escape probability, since we have only used
the externally measured recombination constants, and is not
accounted for by imperfect light trapping. We conclude that the

bimolecular recombination constant is not purely radiative but
has a non-radiative component. This also explains the offset of
the total recombination rate to the radiative recombination rate in
the bimolecular regime in Fig. 3b (Supplementary Fig. 6 for
iodide and iodide–chloride perovskite). A known non-radiative
bimolecular process is for example trap-assisted Auger
recombination34. Another model picture is that the carriers are
spending most of their time in traps but are still diffusing between
them. The recombination kinetics could then look bimolecular,
but some carriers would recombine via traps. The origin of this
recombination pathway, however, has still to be clarified.
Figure 4a shows the external PLQE for bromide perovskite. The
blue dashed line represents the model assuming no photon
recycling that under-estimates the external PLQEs. This re-
confirms that photon recycling is happening in these perovskite
structures. By fitting equation (6) to the experimental PLQE data
with bnon as the only fitting parameter, we derive radiative and
non-radiative bimolecular recombination constants as reported in
Table 2. The black line in Fig. 4a represents the fit according to
this model and the red line shows the calculated internal PLQE
according to equation (3). We conclude that internal PLQEs in
perovskite can exceed 70%. This is, however, an estimate as there
is no direct way to measure internal PLQEs for these films due to
the non-linearity of internal and external PLQE (equation (3)).

Figure 4b shows measured external PLQEs for MAPbI3 under
pulsed and CW excitation. Under pulsed excitation, we can reach
high excitation densities, which proves difficult with CW
excitation due to the strong increase in recombination rates as
seen in Fig. 2. When measuring PLQEs under pulsed excitation,
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we observe a time average of the PLQE for different carrier
densities during the transient PL decay. The continuous lines
represent the model discussed before, where the PLQE under
pulsed excitation is the CW PLQE averaged over n from 0 to n0.
We find that the measured PLQEs under pulsed and CW
excitation are in good agreement with this model.

Figure 4c shows calculations of internal and external
PLQEs according to equations (3) and (6) for different escape
probabilities Zesc together with the experimental PLQE for the
iodide–chloride film on the textured and planar substrate. By
structuring the substrate, we have increased the escape probability
from 7% to above 50%.

Discussion
The dominant PL emitting process is bimolecular. The radiative
emission rate of perovskites is therefore not constant but linear in
excitation density. We find that the reported monomolecular
lifetimes at low fluences5,21,35 have their origin in a non-radiative
recombination channel. The light-emitting process, however,
is still bimolecular. This implies that the decays measured
in transient PL measurements are twice as fast as the actual
carrier population decay. One therefore has to multiply the
monomolecular lifetime measured in low fluence PL experiments
by 2 in order to get the actual carrier lifetime.

PL tð Þ ¼ b � n2 ¼ b � n0 � e� a�tð Þ2¼ b � n2
0 � e� 2a�t ð7Þ

We attribute this monomolecular non-radiative recombination
to a trap-assisted Shockley-Read-Hall recombination, which has
been reported before and studied in detail25,36,37. The processes
of carrier trapping, de-trapping and subsequent recombination
can be described in more detail, but this is beyond the scope of
this work. We attribute the radiative bimolecular recombination
process to a band-to-band transition and the three-particle
recombination to an Auger process. When comparing the pure
iodide with the iodide–chloride perovskite, we observe that their
bimolecular and Auger constants are very similar while the a
constant is almost an order of magnitude higher for the pure
iodide film than for the chloride-doped material. The lower
monomolecular recombination in chloride-doped perovskite
points towards a lower trap density in these films, which will
lead to much more efficient photon recycling and thus higher
power conversion efficiencies in photovoltaics. The main
difference in carrier recombination in these two material
compositions is therefore the formation of fewer defect sites in
chloride-doped films, rather than an intrinsic difference in the
carrier–carrier interaction.

Photon recycling can boost external PLQEs significantly as
shown in Fig. 4a. With an escape probability of B12.5%, 7 out of
8 emitted photons will stay in the perovskite film and get
re-absorbed. For our iodide–chloride planar films, we measured
20% external PLQE. Without re-emission of the re-absorbed
photons, this number would have been as low as
Z � Zesc¼ 70% � 12.7%¼ 8.9%.

Photon recycling does affect the apparent radiative bimolecular
constant. The relation between these two is given by the escape

probability for photons, see Table 2. The internal recombination
constant can be eight times higher than the externally observed
constant.

The direction of luminescence emission plays an important
role and affects the escape probability. We performed all
measurements on pure perovskite films on glass substrates.
We therefore had to distinguish between the two interfaces
perovskite-glass and perovskite-air. The introduction of rear
mirrors simulates the situation of an optoelectronic device where
the rear electrode often acts like a mirror, and has been studied in
detail30. It has been shown that in such samples the external
PLQE strongly depends on the quality of the mirror due to
parasitic absorption losses. Studying the pure perovskite film on
glass is a best-case scenario for emission as our samples do not
contain any additional layers that could cause parasitic absorption
of luminescence. In a device, any additional layers could cause a
small proportion of parasitic absorption that would affect the
external luminescence intensity.

Efficient photon recycling can be highly beneficial for
power conversion efficiencies of solar cells. The emission of
luminescence under open circuit will give an additional photon
field to the sunlight radiation leading to an overall higher photon
density in the semiconductor compared with the case without
photon recycling. This effect has been reported to produce higher
open-circuit voltages30,38. For significant boosts in open-circuit
voltage, a very high external PLQE under open-circuit condition
is necessary. The dependence of the open-circuit voltage has been
found to be30,39,40

q � VOC ¼ q � VOC ideal� k � T � ln Zextj j ð8Þ

where VOC ideal denotes the open-circuit voltage in the radiative
limit, that is, under unity external PLQE40. An increase in
external PLQE at solar fluences (excitation density of 1015 cm� 3)
from 1% to close to unity would therefore bring a voltage increase
of 0.12 V. The external PLQE Zext has been found to depend both
on internal PLQE and the light escape probability according to
equation (3). The external PLQEs can thus be enhanced by
increasing the internal PLQEs and by improving the light out-
coupling via surface roughening. For solar cells, a performance
boost can be achieved by either an efficient photon recycling
process that requires very high internal PLQEs, causing a voltage
gain, or by randomising the surface of the film. In the latter case,
the PL out-coupling under open-circuit condition is improved as
well as the in-coupling of sunlight. This leads to higher short-
circuit currents and to power conversion efficiencies exceeding
those of planar films as shown for GaAs by Miller et al.30 For
internal PLQEs lower than 95% and the corresponding external
PLQEs lower than 50% (according to equation (3)), photon
recycling becomes detrimental due to the non-radiative losses in
each recycling step. The textured solar cell design is then
particularly favourable. The surface of the textured film
randomizes the angle of the incoming sunlight light as it enters
the perovskite film. The ‘trapped’ photons will then have a
small escape probability of 1/4n2¼ 1/30 at each bounce. Light
will therefore travel up to 30-times further in the active layer

Table 2 | Bimolecular recombination constants for planar films of halide perovskites.

Bimolecular constants in cm3 s� 1 MAPbI3 MAPbI3� xClx MAPbBr3

b¼ bnonþ bradþ brad,ext (from TA) 8.1e� 11 7.9e� 11 7.0e� 11
bnon (from PLQE) 7.2e� 11 5.6e� 11 5.4e� 11
brad,ext (from PLQE) 0.9e� 11 2.3e� 11 1.6e� 11
brad,int¼ brad,ext/Zesc (calc.) 7.1e� 11 18.1e� 11 10.1e� 11

Internal and external bimolecular recombination constants derived from the measured recombination rates in Fig. 2 and the measured external PLQEs.
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(this value is slightly reduced in sub-wavelength thick active
layers41) than in the planar film as illustrated in Fig. 4b. This
allows to make much thinner active layers compared with the
planar structure without compromising photon absorption. This
increases the concentration of charges in the perovskite layer,
reduces the series resistance of the device and improves the fill
factor.

Solar cells and LEDs are reciprocal devices. Thus, for light-
emitting applications, the structure of the device and surfaces will
have strong influence on the external luminescence. Light
trapping reduces the external light intensity in planar film LEDs.
Approaches similar to those demonstrated here can be used to
increase the light out-coupling of perovskite LEDs and therefore
significantly increase the external quantum efficiencies. This
includes a texturing of the substrate or of the film surface, the use
of microlenses to suppress total internal reflection or a refractive
index matching of the substrate.

Methods
Film preparation. For the iodide and bromide perovskite films: 3:1 molar
stoichiometric ratios of CH3NH3I and CH3NH3Br for bromide and Pb(CH3COO)2

(Sigma Aldrich 99.999% pure) were made in N,N-dimethylformamide (DMF) in
20wt% solution. These solutions were spun inside a nitrogen filled glove box on
quartz substrates at 2,000 r.p.m. for 60 s followed by 3 min of thermal annealing at
100 �C in air to form thin films. For iodide–chloride perovskite, PbCl2 was used in
the precursor instead of Pb(CH3COO)2.

Preparing the glass substrates. Perovskite films were deposited on planar glass
substrates, glass substrates with beads and rough glass substrates. For the substrate
with beads, a solution of silica beads with 1 mm diameter (Sigma Aldrich
microparticles, 56798-5ML-F) was spin coated on top of a flat glass substrate.
For the rough substrates, a flat glass substrate was abraded with sandpaper with
1,200 grains per inch giving structures on the length scale of 100 nm to 1 mm.

Photothermal deflection spectroscopy. Photothermal deflection spectroscopy
(PDS) is a highly sensitive surface averaged absorption measurement technique.
For the measurements, a monochromatic pump light beam produced by a com-
bination of a Light Support MKII 100W Xenon arc source and a CVI DK240
monochromator, is shined on the sample (film on Quartz substrate), inclined
perpendicular to the plane of the sample, which on absorption produces a thermal
gradient near the sample surface via non-radiative relaxation induced heating. This
results in a refractive index gradient in the area surrounding the sample surface.
This refractive index gradient is further enhanced by immersing the sample in a
deflection medium comprising of an inert liquid FC-72 Fluorinert (3M Company)
that has a high refractive index change per unit change in temperature. A fixed
wavelength CW transverse laser probe beam, produced using a Qioptiq 670 nm
fiber-coupled diode laser with temperature stabilizer for reduced beam pointing
noise, was passed through the thermal gradient in front of the sample producing a
deflection proportional to the absorbed light at that particular wavelength, which is
detected by a differentially amplified quadrant photodiode and a Stanford Research
SR830 lock-in amplifier combination. Scanning through different wavelengths
gives us the complete absorption spectra.

Transient absorption. A Ti:Sapphire amplifier system (Spectra Physics Solstice)
operating at 1 kHz generated 90-fs pulses was split to given the pump and
probe beam arms. The broad band probe beam was generated in a home-built
noncollinear optical parametric amplifier. The pulsed excitation was provided by a
TOPAS optical parametric amplifier (Light Conversion), to generate narrowband
(10 nm full-width at half-maximum) pump pulses of 490 nm for bromide
perovskite samples and 650 nm for iodide and iodide–chloride perovskite samples.
The transmitted pulses were collected with an InGaAs dual-line array detector
(Hamamatsu G11608-512) driven and read out by a custom-built board from
Stresing Entwicklungsbüro.

Transient photoluminescence spectroscopy. Time-resolved photoluminescence
measurements were taken with a gated intensified CCD camera system (Andor
iStar DH740 CCI-010) connected to a grating spectrometer (Andor SR303i).
Excitation was performed with femtosecond laser pulses that were generated in a
home-built setup by second harmonic generation in a beta barium borate (BBO)
crystal from the fundamental output (pulse energy 1.55 eV, pulse length 80 fs) of a
Ti:Sapphire laser system (Spectra Physics Solstice). The laser pulses had an energy
of 3.1 eV. Temporal resolution of the PL emission was obtained by measuring the
PL from the sample by stepping the iCCD gate delay for different delays with
respect to the excitation. The gate width was 1.5 ns.

Photoluminescence quantum efficiency measurements. The PLQE of the
samples was measured using an integrating sphere method, described elsewhere42.
A continuous wave 532 nm diode laser (407 nm for bromide perovskite) was used
to photo-excite the samples. Emission was measured using an Andor iDus
DU490A InGaAs detector. The samples were encapsulated between two glass cover
slips before measurements.

For pulsed PLQE measurements, excitation was performed with femtosecond
laser pulses that were generated in a home-built setup by second harmonic
generation in a BBO crystal from the fundamental output (pulse energy 1.55 eV,
pulse length 80 fs) of a Ti:Sapphire laser system (Spectra Physics Solstice). PL was
recorded with an Andor ICCD (intensified charge-coupled device) after calibration
with a calibration lamp.

Transient PL measurements with TCSPC. The sample was excited with a pulsed
supercontinuum laser (Fianum Whitelase SC-400-4, 6 ps pulse lengths) at 0.5 MHz
(0.2 MHz for mixed halide samples) repetition rate. The pump wavelength was
selected to 490 nm (full-width at half-maximum 10 nm) with dielectric filters
(Thorlabs). Pump scatter light from the laser excitation within the photo-
luminescence path to the detector was filtered-out using an absorptive long-pass
filter with a 515 nm edge (Thorlabs). The detection wavelength was selected using
dielectric filters (Thorlabs) in front of the detector (4665 nm for MAPbI3
and mixed halide, 514±10 nm for MAPbBr3). The photoluminescence was
focused and detected by a single-photon avalanche photodiode based on Si
(MPD-PDM-PDF) with an instrument response of circa 300 ps.

Data availability. The experimental data that support the findings of this study are
available in the University of Cambridge Repository (https://doi.org/10.17863/
CAM.6537).
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