7 research outputs found

    Toll-like receptor 4 selective inhibition in medullar microenvironment alters multiple myeloma cell growth.

    Full text link
    peer reviewedBone marrow (BM) mesenchymal stromal cells (MSCs) are abnormal in multiple myeloma (MM) and play a critical role by promoting growth, survival, and drug resistance of MM cells. We observed higher Toll-like receptor 4 (TLR4) gene expression in MM MSCs than in MSCs from healthy donors. At the clinical level, we highlighted that TLR4 expression in MM MSCs evolves in parallel with the disease stage. Thus, we reasoned that the TLR4 axis is pivotal in MM by increasing the protumor activity of MSCs. Challenging primary MSCs with TLR4 agonists increased the expression of CD54 and interleukin-6 (IL-6), 2 factors directly implicated in MM MSC-MM cell crosstalk. Then, we evaluated the therapeutic efficacy of a TLR4 antagonist combined or not with conventional treatment in vitro with MSC-MM cell coculture and in vivo with the Vk*MYC mouse model. Selective inhibition of TLR4 specifically reduced the MM MSC ability to support the growth of MM cells in an IL-6-dependent manner and delayed the development of MM in the Vk*MYC mouse model by altering the early disease phase in vivo. For the first time, we demonstrate that specific targeting of the pathological BM microenvironment via TLR4 signaling could be an innovative approach to alter MM pathology development

    Inferior In Vivo Osteogenesis and Superior Angiogeneis of Human Adipose Tissue: A Comparison with Bone Marrow-Derived Stromal Stem Cells Cultured in Xeno-Free Conditions

    No full text
    International audienceThe possibility of using adipose tissue-derived stromal cells (ATSC) as alternatives to bone marrow-derived stromal cells (BMSC) for bone repair has garnered interest due to the accessibility, high cell yield, and rapid in vitro expansion of ATSC. For clinical relevance, their bone forming potential in comparison to BMSC must be proven. Distinct differences between ATSC and BMSC have been observed in vitro and comparison of osteogenic potential in vivo is not clear to date. The aim of the current study was to compare the osteogenesis of human xenofree-expanded ATSC and BMSC in vitro and in an ectopic nude mouse model of bone formation. Human MSC were implanted with biphasic calcium phosphate biomaterials in subcutis pockets for 8 weeks. Implant groups were: BMSC, ATSC, BMSC and ATSC mixed together in different ratios, as well as MSC primed with either osteogenic supplements (250 lM ascorbic acid, 10 mM b-glycerolphosphate, and 10 nM dexametha-sone) or 50 ng/ml recombinant bone morphogenetic protein 4 prior to implantation. In vitro results show osteogenic gene expression and differentiation potentials of ATSC. Despite this, ATSC failed to form ectopic bone in vivo, in stark contrast to BMSC, although osteogenic priming did impart minor osteogenesis to ATSC. Neovascularization was enhanced by ATSC compared with BMSC; however, less ATSC engrafted into the implant compared with BMSC. Therefore, in the content of bone regen-eration, the advantages of ATSC over BMSC including enhanced angiogenesis, may be negated by their lack of osteogenesis and prerequisite for osteogenic differentiation prior to transplantation

    Effects of a ceramic biomaterial on immune modulatory properties and differentiation potential of human mesenchymal stromal cells of different origin

    No full text
    International audienceThe aim of this study was to assess the immune modulatory properties of human mesenchymal stromal cells obtained from bone marrow (BM-MSCs), fat (ASCs) and cord blood (CB-MSCs) in presence of a hydroxyapatite and tricalcium-phosphate (HA/TCP) biomaterial as a scaffold for MSC delivery. In resting conditions, a short-term culture with HA/TCP did not modulate the anti-apoptotic and suppressive features of the various MSC types towards T, B and NK cells; in addition, when primed with inflammatory cytokines, MSCs similarly increased their suppressive capacities in presence or absence of HA/TCP. The long-term culture of BM-MSCs with HA/TCP induced an osteoblast-like phenotype with up-regulation of OSTERIX and OSTEOCALCIN, similarly to what obtained with dexamethasone and, to a higher extent, with BMP-4 treatment. MSC-derived osteoblasts did not trigger immune cell activation, but were less efficient than undifferentiated MSCs in inhibiting stimulated T and NK cells. Interestingly, their suppressive machinery included not only the activation of indoleamine-2,3 dioxygenase (IDO), which plays a central role in T cell inhibition, but also cyclooxygenase 2 (COX-2) that was not significantly involved in immune modulatory effect of human undifferentiated MSCs. As COX-2 is significantly involved in bone healing, its induction by HA/TCP could also contribute to the therapeutic activity of MSCs for bone tissue engineering

    Functional Comparison between Healthy and Multiple Myeloma Adipose Stromal Cells

    No full text
    Multiple myeloma (MM) is an incurable B cell neoplasia characterized by the accumulation of tumor plasma cells within the bone marrow (BM). As a consequence, bone osteolytic lesions develop in 80% of patients and remain even after complete disease remission. We and others had demonstrated that BM-derived mesenchymal stromal cells (MSCs) are abnormal in MM and thus cannot be used for autologous treatment to repair bone damage. Adipose stromal cells (ASCs) represent an interesting alternative to MSCs for cellular therapy. Thus, in this study, we wondered whether they could be a good candidate in repairing MM bone lesions. For the first time, we present a transcriptomic, phenotypic, and functional comparison of ASCs from MM patients and healthy donors (HDs) relying on their autologous MSC counterparts. In contrast to MM MSCs, MM ASCs did not exhibit major abnormalities. However, the changes observed in MM ASCs and the supportive property of ASCs on MM cells question their putative and safety uses at an autologous or allogenic level

    In vitro bone metastasis dwelling in a 3D bioengineered niche

    No full text
    International audienceBone is the most frequent metastasis site for breast cancer. As well as dramatically increasing disease burden, bone metastases are also an indicator of poor prognosis. One of the main challenges in investigating bone metastasis in breast cancer is engineering in vitro models that replicate the features of in vivo bone environments. Such in vitro models ideally enable the biology of the metastatic cells to mimic their in vivo behavior as closely as possible. Here, taking benefit of cutting-edge technologies both in microfabrication and cancer cell biology, we have developed an in vitro breast cancer bone-metastasis model. To do so we first 3D printed a bone scaffold that reproduces the trabecular architecture and that can be conditioned with osteoblast-like cells, a collagen matrix, and mineralized calcium. We thus demonstrated that this device offers an adequate soil to seed primary breast cancer bone metastatic cells. In particular, patient-derived xenografts being considered as a better approach than cell lines to achieve clinically relevant results, we demonstrate the ability of this biomimetic bone niche model to host patient-derived xenografted metastatic breast cancer cells. These patient-derived xenograft cells show a long-term survival in the bone model and maintain their cycling propensity, and exhibit the same modulated drug response as in vivo. This experimental system enables access to the idiosyncratic features of the bone microenvironment and cancer bone metastasis, which has implications for drug testing

    Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells.

    No full text
    International audienceAdult bone marrow-derived mesenchymal stem cells (MSCs) are multipotent cells that are the subject of intense investigation in regenerative medicine. In addition, MSCs possess immunomodulatory properties with therapeutic potential to prevent graft-versus-host disease (GvHD) in allogeneic hematopoietic cell transplantation. Indeed, MSCs can inhibit natural killer (NK) function, modulate dendritic cell maturation, and suppress allogeneic T-cell response. Here, we report that the nonclassic human leukocyte antigen (HLA) class I molecule HLA-G is responsible for the immunomodulatory properties of MSCs. Our data show that MSCs secrete the soluble isoform HLA-G5 and that such secretion is interleukin-10-dependent. Moreover, cell contact between MSCs and allostimulated T cells is required to obtain a full HLA-G5 secretion and, as consequence, a full immunomodulation from MSCs. Blocking experiments using neutralizing anti-HLA-G antibody demonstrate that HLA-G5 contributes first to the suppression of allogeneic T-cell proliferation and then to the expansion of CD4(+)CD25(high)FOXP3(+) regulatory T cells. Furthermore, we demonstrate that in addition to their action on the adaptive immune system, MSCs, through HLA-G5, affect innate immunity by inhibiting both NK cell-mediated cytolysis and interferon-gamma secretion. Our results provide evidence that HLA-G5 secreted by MSCs is critical to the suppressive functions of MSCs and should contribute to improving clinical therapeutic trials that use MSCs to prevent GvHD
    corecore