7 research outputs found

    Pascal Bonitzer, Décadrages : peinture et cinéma, 1985

    No full text
    DeschĂȘnes Jocelyn. Pascal Bonitzer, DĂ©cadrages : peinture et cinĂ©ma, 1985. In: Communication. Information MĂ©dias ThĂ©ories, volume 9 n°1, Ă©tĂ© 1987. Ecrans. pp. 139-140

    Behavioral-play familiarization for non-sedated magnetic resonance imaging in young children with mild traumatic brain injury

    No full text
    International audienceBackground: Mild traumatic brain injury (mTBI) sustained in early childhood affects the brain at a peak developmental period and may disrupt sensitive stages of skill acquisition, thereby compromising child functioning. However, due to the challenges of collecting non-sedated neuroimaging data in young children the consequences of mTBI on young children’s brains have not been systematically studied. In typically developing preschool children (TDC, 3-5 years), brief a behavioral-play familiarization provides an effective alternative to sedation for acquiring awake magnetic resonance imaging (MRI) in a time- and resource-efficient manner. To date, no study has applied such an approach for acquiring non-sedated MRI in preschool children with mTBI who may present with additional MRI acquisition challenges such as agitation or anxiety. Objective: The present study aimed to compare the effectiveness of a brief behavioral-play familiarization for acquiring non-sedated MRI for research purposes between young children with and without mTBI, and to identify factors associated with successful MRI acquisition. Materials and methods: Preschool children with mTBI (n=13) and TDC (n=24) underwent a 15-minute behavioral-play MRI familiarization followed by a 35-minute non-sedated MRI protocol. Success rate was compared between groups, MRI quality was assessed quantitatively, and factors predicting success were documented. Results: Among the 37 participants, 15 TDC (63%) and 10 mTBI (77%) reached the MRI acquisition success criteria (i.e., completing the two first sequences). The success rate was not significantly different between groups (p=.48; 95% CI [-0.36 14.08]; Cramer’s V=.15). The images acquired were of high-quality in 100% (for both groups) of the structural images, and 60% (for both groups) of the diffusion images. Factors associated with success included older child age (B=0.73, p=.007, exp(B)=3.11, 95% CI [1.36 7.08]) and fewer parental concerns (B=-1.56, p=.02, exp(B)=0.21, 95% CI [0.05 0.82]) about the MRI procedure. Conclusion: Using brief behavioral-play familiarization allows acquisition of high-quality non-sedated MRI in young children with mTBI with success rates comparable to those of non-injured peers

    C18O, 13CO, and 12CO abundances and excitation temperatures in the Orion B molecular cloud: Analysis of the achievable precision in modeling spectral lines within the approximation of the local thermodynamic equilibrium

    Get PDF
    International audienceContext. CO isotopologue transitions are routinely observed in molecular clouds for the purpose of probing the column density of the gas and the elemental ratios of carbon and oxygen, in addition to tracing the kinematics of the environment.Aims. Our study is aimed at estimating the abundances, excitation temperatures, velocity field, and velocity dispersions of the three main CO isotopologues towards a subset of the Orion B molecular cloud, which includes IC 434, NGC 2023, and the Horsehead pillar.Methods. We used the Cramer Rao bound (CRB) technique to analyze and estimate the precision of the physical parameters in the framework of local-thermodynamic-equilibrium (LTE) excitation and radiative transfer with added white Gaussian noise. We propose a maximum likelihood estimator to infer the physical conditions from the 1–0 and 2–1 transitions of CO isotopologues. Simulations show that this estimator is unbiased and proves efficient for a common range of excitation temperatures and column densities (Tex > 6 K, N > 1014−1015  cm−2).Results. Contrary to general assumptions, the various CO isotopologues have distinct excitation temperatures and the line intensity ratios between different isotopologues do not accurately reflect the column density ratios. We find mean fractional abundances that are consistent with previous determinations towards other molecular clouds. However, significant local deviations are inferred, not only in regions exposed to the UV radiation field, but also in shielded regions. These deviations result from the competition between selective photodissociation, chemical fractionation, and depletion on grain surfaces. We observe that the velocity dispersion of the C18O emission is 10% smaller than that of 13CO. The substantial gain resulting from the simultaneous analysis of two different rotational transitions of the same species is rigorously quantified.Conclusions. The CRB technique is a promising avenue for analyzing the estimation of physical parameters from the fit of spectral lines. Future works will generalize its application to non-LTE excitation and radiative transfer methods

    Gas kinematics around filamentary structures in the Orion B cloud

    Get PDF
    Understanding the initial properties of star-forming material and how they affect the star formation process is key. From an observational point of view, the feedback from young high-mass stars on future star formation properties is still poorly constrained. In the framework of the IRAM 30m ORION-B large program, we obtained observations of the translucent and moderately dense gas, which we used to analyze the kinematics over a field of 5 deg^2 around the filamentary structures. We used the ROHSA algorithm to decompose and de-noise the C18O(1-0) and 13CO(1-0) signals by taking the spatial coherence of the emission into account. We produced gas column density and mean velocity maps to estimate the relative orientation of their spatial gradients. We identified three cloud velocity layers at different systemic velocities and extracted the filaments in each velocity layer. The filaments are preferentially located in regions of low centroid velocity gradients. By comparing the relative orientation between the column density and velocity gradients of each layer from the ORION-B observations and synthetic observations from 3D kinematic toy models, we distinguish two types of behavior in the dynamics around filaments: (i) radial flows perpendicular to the filament axis that can be either inflows (increasing the filament mass) or outflows and (ii) longitudinal flows along the filament axis. The former case is seen in the Orion B data, while the latter is not identified. We have also identified asymmetrical flow patterns, usually associated with filaments located at the edge of an HII region. This is the first observational study to highlight feedback from HII regions on filament formation and, thus, on star formation in the Orion B cloud. This simple statistical method can be used for any molecular cloud to obtain coherent information on the kinematics

    Symposium International de Sculpture Environnementale de Chicoutimi

    No full text
    corecore