4 research outputs found

    Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila

    Get PDF
    Chromatin organization influences most aspects of gene expression regulation. The linker histone H1, along with the core histones, is a key component of eukaryotic chromatin. Despite its critical roles in chromatin structure and function and gene regulation, studies regarding the H1 protein-protein interaction networks, particularly outside of Opisthokonts, are limited. The nuclear dimorphic ciliate protozoan Tetrahymena thermophila encodes two distinct nucleus-specific linker histones, macronuclear Hho1 and micronuclear Mlh1. We used a comparative proteomics approach to identify the Hho1 and Mlh1 protein-protein interaction networks in Tetrahymena during growth, starvation, and sexual development. Affinity purification followed by mass spectrometry analysis of the Hho1 and Mlh1 proteins revealed a non-overlapping set of co-purifying proteins suggesting that Tetrahymena nucleus-specific linker histones are subject to distinct regulatory pathways. Furthermore, we found that linker histones interact with distinct proteins under the different stages of the Tetrahymena life cycle. Hho1 and Mlh1 co-purified with several Tetrahymena-specific as well as conserved interacting partners involved in chromatin structure and function and other important cellular pathways. Our results suggest that nucleus-specific linker histones might be subject to nucleus-specific regulatory pathways and are dynamically regulated under different stages of the Tetrahymena life cycle.York University Librarie

    Stroma Regulates Increased Epithelial Lateral Cell Adhesion in 3D Culture: A Role for Actin/Cadherin Dynamics

    Get PDF
    Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures.The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability.In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity

    Growth factors and the regulation of pre- and postnatal growth

    No full text
    corecore