1,485 research outputs found

    R116C mutation of cationic trypsinogen in a Turkish family with recurrent pancreatitis illustrates genetic microheterogeneity of hereditary pancreatitis

    Get PDF
    Hereditary pancreatitis is due to heterozygosity for gain-of-function mutations in the cationic trypsinogen gene which result in increased levels of active trypsin within pancreatic acinar cells and autodigestion of the pancreas. The number of disease-causing defects is generally considered to be low. To gain further insight into the molecular basis of this disorder, DNA sequence analysis of all five exons was performed in 109 unrelated patients with idiopathic chronic pancreatitis in order to determine the variability of the underlying mutations. Two German females and one German male were carriers of the most common N291 and R122H mutations (trypsinogen numbering system). In a Turkish proband, an arginine (CGT) to cysteine (TGT) substitution at amino acid position 116 was identified. Family screening demonstrated that the patient had inherited the mutation from his asymptomatic father and that he had transmitted it to both of his children, his daughter being symptomatic since the age of 3 years. In addition, a German male was found to be a heterozygote for a D100H (GAC-->CAC) amino acid replacement. Our data provide evidence for genetic heterogeneity of hereditary pancreatitis. The growing number of cationic trypsinogen mutations is expected to change current mutation screening practices for this disease

    Surface rearrangement at complex adsorbate-substrate interfaces

    Full text link
    On the basis of the information theory approach we propose a novel statistical scheme for analyzing the evolution of coupled adsorbate-substrate systems, in which the substrate undergoes the adsorbate-induced transformations. A relation between the substrate morphology and the adsorbate thermodynamic state is established. This allows one to estimate the surface structure in terms of incomplete experimental information and the one concerning the adsorbate thermodynamic response to the structural modifications.Comment: 5 pages, 3 figure

    Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation

    Get PDF
    Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects

    Surface sticking and lateral diffusion of lipids in supported bilayers

    Get PDF
    The diffusion of fluorescently labeled lipids in supported bilayers is studied using two different methods: Z-scan fluorescence correlation spectroscopy (z-scan FCS) and two-focus fluorescence correlation spectroscopy (2f-FCS). It is found that the data can be fitted consistently only when taking into account partial sticking of the labeled lipids to the supporting glass surface. A kinetic reaction-diffusion model is developed and applied to the data. We find a very slow sticking rate which, however, when neglected, leads to strongly varying estimates of the free diffusion coefficient. The study reveals a strong sensitivity of FCS on even slight binding/unbinding kinetics of the labeled molecules, which has significance for related diffusion measurements in cellular lipid membranes

    Decoupling of superconducting layers in magnetic superconductor RuSr_{2}GdCu_{2}O_{8}

    Full text link
    We propose the model for magnetic properties of the magnetic superconductor RuSr2_{2}GdCu2_{2}O8_{8}, which incorporates the theory of the superconducting/ferromagnetic multilayers. The transition line Td(h)T_{d}(h), on which the Josephson coupled superconducting planes are decoupled, i.e. jc(Td)=0% j_{c}(T_{d})=0, is calculated as a function of the exchange energy hh. As the result of this decoupling a nonmonotonic behavior of magnetic properties, like the lower critical field Hc1H_{c1}, Josephson plasma frequency, etc. is realized near (or by crossing) the Td(h)T_{d}(h) line. The obtained results are used in analyzing the newly discovered antiferromagnetic ruthenocuprate RuSr2_{2}GdCu2_{2}O8_{8} with possible weak ferromagnetic order in the RuO planes.Comment: 12 pages, 3 figs embede

    Investigation of the Structure of Alkyne Self-Assembled Monolayers on Gold and the Development of Matrix-Enhanced Secondary Ion Mass Spectrometry Methods

    Get PDF
    Characterization of thin films is critical to the understanding of many technological and biological processes. The focus of this dissertation is to develop methods to characterize very low concentration species present on surfaces. A reflection adsorption infrared spectroscopy: RAIRS) system was constructed and tested. The instrument comprises an Fourier transform infrared: FTIR) spectrometer, an optical pathway and a vacuum chamber. The RAIRS system is designed to investigate in situ the interaction of vapor-deposited metals and gases, such as CVD precursors, with organic thin films, and so a vacuum chamber is required. To accommodate the vacuum chamber, an external IR optical pathway was designed and assembled because there was not enough room in the internal optical pathway of the FTIR spectrometer. The synthesis and characterization of terminal alkyne monolayers: TAMs) adsorbed on gold was investigated by RAIRS, single wavelength ellipsometry, time-of-flight secondary ion mass spectrometry: TOF SIMS) and x-ray photoelectron spectroscopy: XPS). TAMs have the potential to transform surface functionalization for many technological applications because they have increased temperature stability and electrical conductance. However, the data suggest that TAMs are not well-ordered and can be oxidized, which may limit their application. For TAMs with less than 11 methylene units in the backbone, the adsorbed layer is highly disordered, oxidized and has a multilayer structure. Longer chain length TAMs form disordered monolayers on gold. As the methylene chain length increases, the conformational order of the TAMs increases with the alkynes in an upright conformation and bound to the surface via a Au-C¡ÕC- bond. The use of room temperature ionic liquids: ILs) as matrices in TOF SIMS was examined to further characterize biological thin films. The data indicate that the secondary ion intensities of lipids, steroids, peptides, proteins and proteins are significantly enhanced using IL matrices. Secondary ion enhancements of at least an order of magnitude are typically observed. Limits of detection are also greatly improved. For example, the limits of detection of 1,2-dipalmityl-sn-glycero-phosphocholine: DPPC) and 1,2-dipalmityl-sn-glycero-phosphoethanolamine: DPPE) were at least two orders of magnitude better. The data also show that ILs are suitable matrices for imaging SIMS. The IL matrices did not cause changes to the sample surface; no ¡°hot spots¡± were observed. The mechanism of the secondary ion intensity enhancements using IL matrices was then investigated to optimize use in characterization. Only protic ILs, which are formed by the transfer of a proton from a Br©ªnsted acid to base, were observed to increase analyte signals. The matrix enhancement mechanism therefore involves the transfer of protons from, or to, the analyte, to, or from the matrix. The magnitude of the analyte signal enhancements is dependent on the chemistry of the matrix cation, anion and analyte. The pKa of the matrix acid and base do not appear to have a strong effect on the ion-intensity enhancements. The results also indicate that the chemical identity of the matrix anion has a stronger effect on analyte signal enhancements than the matrix cation

    Two-Focus Fluorescence Correlation Spectroscopy

    Get PDF
    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure

    Molecular rheometry: direct determination of viscosity in L-o and L-d lipid phases via fluorescence lifetime imaging

    Get PDF
    Understanding of cellular regulatory pathways that involve lipid membranes requires the detailed knowledge of their physical state and structure. However, mapping the viscosity and diffusion in the membranes of complex composition is currently a non-trivial technical challenge. We report fluorescence lifetime spectroscopy and imaging (FLIM) of a meso-substituted BODIPY molecular rotor localised in the leaflet of model membranes of various lipid compositions. We prepare large and giant unilamellar vesicles (LUVs and GUVs) containing phosphatidylcholine (PC) lipids and demonstrate that recording the fluorescence lifetime of the rotor allows us to directly detect the viscosity of the membrane leaflet and to monitor the influence of cholesterol on membrane viscosity in binary and ternary lipid mixtures. In phase-separated 1,2-dioleoyl-sn-glycero-3-phosphocholine-cholesterol–sphingomyelin GUVs we visualise individual liquid ordered (Lo) and liquid disordered (Ld) domains using FLIM and assign specific microscopic viscosities to each domain. Our study showcases the power of FLIM with molecular rotors to image microviscosity of heterogeneous microenvironments in complex biological systems, including membrane-localised lipid rafts
    corecore