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Super-resolution provided by the arbitrarily strong
superlinearity of the blackbody radiation
Guillaume Graciani 1 & François Amblard 1,2*

Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck

marks a cornerstone in the history of Physics. In this theoretical work, we show that the

spectral radiance given by Planck’s law is strongly superlinear with temperature, with an

arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we

propose a new concept of super-resolved detection and imaging: if a focused beam of energy

is scanned over an object that absorbs and linearly converts that energy into heat, a highly

nonlinear thermal radiation response is generated, and its point spread function can be made

arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we

propose to extend the notion of super-resolution beyond its current niche in microscopy to

various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of

target objects.
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Our capacity to resolve nearby objects with detection or
imaging devices, such as optical microscopes, radars, and
optical or radio telescopes, has been long recognized to be

limited by diffraction. Since the pioneering work of Abbe in
18731, the diffraction limit could not be overcome for more than
a century. In the past 30 years, however, various concepts have
been successfully proposed to bring the resolution of microscopy
beyond the diffraction barrier2–4. One strategy is to use near-field
excitation, with sub-micron optical apertures or tips that confine
the excitation volume to sub-diffraction dimensions5. Near-field
microscopies have successfully helped to resolve nanoscopic
objects, but their field of application is rather limited because they
do not defeat the diffraction limit per se in the far field.

For any kind of wave obeying the basic wave equation, the energy
flow it transports cannot be focused in the far field to a focus
smaller than the diffraction limit, and the resulting response of an
object moving through that focus cannot be confined to a smaller
spot unless one breaks the usually expected linear relationship
between the local excitation intensity and the resulting response.
However, if that linearity is broken by enhancing the response for
high intensities and/or reducing it for low intensities, the response
will necessarily be confined to a smaller volume. In the optical
domain, such nonlinear responses require a saturable optical tran-
sition, which can be an intrinsic optical property of the target object,
or the result of a spatially modulated saturation as implemented in
STED (stimulated emission depletion) microscopy6. While such
intrinsically nonlinear responses have been characterized for a range
of photo-luminescent semiconductor objects, such as quantum
dots7 or Si nanoparticles8, molecular fluorophores have also been
successfully engineered for enhancing nonlinearities, leading to
different methods of super-resolution microscopy9. However,
beyond the context of photo-luminescence and super-resolved
optical microscopy, the detection of any kind of object by its
response to an electromagnetic excitation requires that a significant
part of the excitation energy be scattered or converted into some
sort of detectable radiative response. Non-radiative relaxation
instead leads to heat production, which is useless in that context,
except for some techniques such as photo-thermal imaging10.

The idea stands out here to consider that absorption-induced
heating does not mean non-radiative relaxation, but necessarily
produces instead a thermal radiation signal, which propagates in
the far field. This excitation-induced thermal radiation could in
principle be used for active thermal detection or imaging, as an
attractive alternative for weakly scattering or weakly luminescent
objects. This approach would best suit the case of strong absor-
bers with strong emissivity, idealized by the concept of blackbody
objects with perfect absorption and maximal thermal radiation.

In the present report, we introduce a new idea that extends the
concept of super-resolution beyond its original niche in fluores-
cence microscopy, to a broad range of potential applications in
imaging and imageless detection. If a blackbody-like object is heated
with a linear temperature rise by the energy it absorbs from the
diffraction-limited focus of a beam, and regardless of the physical
nature of that beam, its thermal response will be confined to a
volume smaller than the focus. The theory we present shows indeed
that the intrinsic superlinearity of the blackbody radiation spectrum
theoretically leads to arbitrarily high spatial compression factors of
the thermal response relative to the diffraction-limited excitation
volume. Practically, the concept of super-resolved thermal detection
is discussed for simple cases and in the context of recently observed
heating probes and of the most advanced optical detectors.

Results
Nonlinear structure of the Planck radiation spectrum. While
thermal radiation and the notion of a perfectly absorbing

blackbody had been explored and partially understood since the
pioneering work of Kirchhoff11, Planck proposed in 1901 a
keystone heuristic argument, namely the quantification of light-
matter interactions, that both initiated the development of
quantum mechanics and solved the long-standing mystery called
the ultraviolet (UV) catastrophe of blackbody radiation. The so-
called Planck law of blackbody radiation12, which describes the
spectrum of the thermal light emitted by a perfectly absorbing
surface at thermodynamic equilibrium, can be expressed by the
photonic spectral radiance, that is, the number of photons
emitted per unit time, unit surface, unit solid angle, and per unit
of wavelength (#ph s−1 m−2 sr−1 μm−1), as:

SðT; λÞ ¼ 2 ´ 108
c

λ4
exp10

6 hc
λkBT � 1

� ��1
; ð1Þ

where T is the equilibrium temperature of the surface in Kelvins,
λ the wavelength in μm, h and kB the Planck and Boltzmann
constants, and c the speed of light. SðT; λÞ reaches a spectral peak
SmaxðTÞ that scales itself as T4, for a wavelength λmaxðTÞ that
scales as T�1 according to Wien’s displacement law.

Let us now analyze the nonlinearities of the photonic spectral
radiance SðT; λÞ with respect to T and λ. These nonlinearities can be
characterized locally by two exponents νλðT; λÞ and νTðT; λÞ
defined by the local scaling SðT; λÞ / TνTλνλ . In other words,
for two dimensionless scalars ε and η with small enough
values (jεj; jηj � 1), Sðð1þ εÞT; ð1þ ηÞλÞ � ð1þ νTεÞð1þ νληÞ
SðT; λÞ. These two exponents, respectively, represent the ratios of the
relative increase of SðT; λÞ to the relative increases of T and λ. Let us
define α as a dimensionless scaling parameter. If the temperature is
shifted from T to αT , the spectra at those two temperatures are
related by the simple scaling relation:

SðαT; λÞ ¼ α4SðT; αλÞ: ð2Þ

This equation means that the log–log plot representation of SðαT; λÞ
is simply obtained from SðT; λÞ by two logarithmic translations
λ ! αλ and S ! α4S (Fig. 1 a). This scaling invariance of the
radiance is well illustrated in the Supplementary note 2. When
combined with the definition of the exponents, that is,
SðT; λÞ / TνTλνλ , one easily obtains νTðT; λÞ ¼ 4þ νλðT; λÞ. This
is an important result, which means that thermal spectra all have the
same structure of nonlinearities, that only depends on the ratio
λ=λmaxðTÞ. For λ=λmaxðTÞ � 1, S / Tλ�3, that is, νT ¼ 1 and
νλ ¼ �3. Qualitatively, for decreasing wavelengths, the exponent νλ
increases from −3 to 0 at λmax, and further increases to infinity. The
dependence in T has a stronger superlinearity, since νT ¼ 4 for λmax,
and exhibits a faster divergence toward the UV catastrophe (Fig. 1 a).
Quantitatively, νλ was numerically assessed from the logarithmic
derivative ∂logðSÞ

∂logðλÞ (Fig. 1 c). For T= 300K and λ= 800 nm, we found

the scaling S / λ�57. The practical meaning of exponents is the
following. At 800 nm, the spectral radiance increases by 57% when
the temperature increases by 1% above the ambient temperature, and
it typically doubles for a 2 K temperature increase.

To make use of the superlinearity of the blackbody radiation
with the temperature, photons should ideally be collected over a
spectral region 0 � λ � Λ with high nonlinearity exponents, that
is, with Λ � λmax. We therefore introduce the notion of partial
photonic radiance PðT ;ΛÞ defined by the spectral integration up
to the boundary Λ:

PðT;ΛÞ ¼
ZΛ

0

SðT; λÞdλ; ð3Þ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13780-4

2 NATURE COMMUNICATIONS |         (2019) 10:5761 | https://doi.org/10.1038/s41467-019-13780-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


which easily leads to a new scaling relation:

PðαT;ΛÞ ¼
ZΛ

0

SðαT; λÞdλ ¼ α3PðT; αΛÞ: ð4Þ

When Λ ! 1, Eq. (4) indicates that the total number of thermal
photons is superlinear in T as it scales as T3, which is in
agreement with the T4 scaling given by the well-known
Stefan–Boltzmann law for the total energy. However, for any
finite integration boundary Λ on the UV side of the Planck
spectrum, that is, Λ � λmax, the increasing superlinearity of S for
decreasing wavelengths leads to the fact that the spectral integral
in Eq. (3) is largely dominated by the contribution at the upper
boundary SðT;ΛÞ. As a consequence, the superlinearity of the
spectral integral is characterized by a new scaling relation,
PðαT;ΛÞ ¼ αωTPðT;ΛÞ, in which the scaling exponent can be
approximated as ωT � 3þ νλðT;ΛÞ. Numerically, this nonli-
nearity exponent ωT was assessed from the logarithmic derivative
∂logðPÞ
∂logðTÞ (Fig. 1 d). For T= 300 K and Λ ¼ 800 nm, we found that

P / T�60, in agreement with ωT � 3þ νλðT;ΛÞ.

Compression of the point spread function. Let us now examine
why and the circumstances under which the superlinearity
described above can lead to super-resolved detection and ima-
ging. If an extended object is locally heated up by a focused beam
of energy characterized by a transverse intensity profile Iðx; yÞ,
the surface temperature will locally rise accordingly, but heat will
be driven away from where it is initially created, by heat diffusion

within the surface and perpendicular to it. However, if energy is
delivered by short enough pulses, heat accumulation can be made
faster than the relevant diffusion times, and the resulting thermal
radiation can be captured from the focus before its spatial profile
is broadened by diffusion. Pulsed illumination and/or fast beam
scanning is therefore the preferred option for experimental rea-
lizations, and the following analysis will be performed under the
assumption that heat does not diffuse away. In addition, we will
assume that the spectral photonic radiance is determined by the
local thermodynamic temperature of the surface and Planck’s law,
despite the surface being far from equilibrium. This is a valid
assumption for time-scales larger than the phonon equilibration
time (1–10 ps). For the sake of simplicity, we make the assump-
tion that the temperature locally rises proportionally to the
intensity Iðx; yÞ, that is, with no change of heat capacity and no
phase transition. Also, the spectral emissivity will be considered
to be invariant with temperature. Finally, a change of the target
temperature may cause a variation of the spectral emissivity and
thermal expansion. The emissivity comes as a wavelength-
dependent pre-factor of the Planck spectrum, which possibly
varies with temperature, although very smoothly. Emissivity was
therefore assumed to be unity at all wavelengths. For most solid
materials, expansion coefficients are typically 10�5 � 10�6, and
rarely exceed 10�4. In the worst-case scenario, a 100 K increase
would typically degrade the point spread function (psf) by a
factor 1.01, and thermal expansion can be safely neglected.

Under the above assumptions, energy absorption, heat
production, and temperature increase operate locally and linearly,
and the notion of psf becomes meaningful for the following

1025

@ T ref = 300 K

@ T ref = 300 K �T ≈ 60 K

�T ≈ �λ + 3

�λ ≈ 57

�T ≈ �λ + 4

�λ < 0

–3

� λ

�
T

Blackbody photonic radiance P

Blackbody photonic radiance P - T scaling

Blackbody photonic spectral radiance S

Blackbody photonic spectral radiance S - λ scaling

Blackbody photonic spectral radiance S

P
ho

to
ni

c 
sp

ec
tr

al
 r

ad
ia

nc
e

Λ Wavelength increases

@ Λ = 800 nm

Λ = 0.8

Λ increases

Wavelength/�m

Wavelength (μm)

Wavelength (μm)

3000 nm

2000 nm

1500 nm

1000 nm

800 nm

1020

1015

#
ph

 s
–1

m
–2

sr
–1

ΔT (K )

ΔT (K )

1010

105

100

1040

1030

1020

#
ph

 s
–1

m
–2

sr
–1

μm
–1

1010

100

60

50

150

100

50

–3

40

30

20

10
0 100

1000.1 10
200 300 400 500 600 700

0 100 200 300 400 500 600 700

b

d

a

c

�λ

λmax

λmax (�T )

�T

�4

�
��λ

λmax (T ) = �λmax (�T )

S (�T , λ)
S (T , �λ)

S (T , λ)

S (�T , λ) = �4S (T , �λ)

S (�T , λmax (�T ))

S (T , λmax (T ))
∝ T /λ3

λmax (T )

�λ > 0 

1001010.1

T

Fig. 1 Nonlinear structure of the Planck radiation spectrum. a Blackbody photonic spectral radiance SðT; λÞ in units of (#ph s
−1 m−2 sr−1 m−1), as a

function of the wavelength for two temperatures T (400 K) and αT (500 K, α ¼ 1:25). The maximum emissions occur at λmaxðTÞ and λmaxðαTÞ,
respectively, such that λmaxðTÞ ¼ αλmaxðαTÞ. b blackbody photonic radiance (#ph s−1 m−2 sr−1) as a function of the temperature excess ΔT above
Tref = 300 K, for different values of the upper boundary Λ of the spectral integration domain. The blackbody photonic radiance PðTref þ ΔT;ΛÞ is obtained
by integrating the photonic spectral radiance SðTref þ ΔT;ΛÞ over different spectral domains ½0;Λ� as displayed on the lower right insert. c The function
νλðT; λÞ describes the local nonlinearity exponent of SðT; λÞ / λνλ . It is numerically computed for Tref ¼ 300 K. d The function ωTðT;ΛÞ describes the local
nonlinearity exponent PðT;ΛÞ / TωT . It is numerically computed for Λ= 800 nm.
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analysis. Let us consider a focused beam with a two-dimensional
spatial intensity profile Iðx; yÞ ¼ Imax

~Iðx; yÞ such as a Gaussian or
Airy shape, and an object smaller than the beam section.
When located at position ðx; yÞ, we assume that the object
experiences uniform intensity Iðx; yÞ that produces a proportional
temperature increase ΔTðx; yÞ ¼ Tðx; yÞ � Tref , with Tref �
Tðx; yÞ � Tmax. Thermal detection over a given spectral domain
λ � Λ can be described using the photonic radiance response,
and we define the effective response as Rðx; yÞ defined as the
difference:

Rðx; yÞ ¼ PðTðx; yÞ;ΛÞ � PðTref ;ΛÞ: ð5Þ

The normalized spatial profile of that response, ~Rðx; yÞ ¼
Rðx; yÞR�1

max, then appear as a function of the dimensionless
excitation ~Iðx; yÞ parametrized by Tref , ΔTmax and Λ as:

~Rðx; yÞ ¼ R�1
max½PðT ref þ ΔTmax

~Iðx; yÞ;ΛÞ � PðTref ;ΛÞ� ¼ ~Rð~Iðx; yÞÞ:

ð6Þ

This normalized dimensionless response ~Rð~Iðx; yÞÞ is a complex
non-algebraic function that exhibits a strong superlinearity
(Fig. 2a1, a2) with apparent exponents that only depend on the
parameters Tref , ΔTmax, and Λ. As a consequence, the spatial
extension of ~R as a function of ðx; yÞ is contracted compared to
~Iðx; yÞ, as schematically illustrated on Fig. 2b. The extent of psf

contraction is assessed by the compression factor μ between
these two profiles measured from their full width at 1=e2, which is
computed numerically from Eq. (6), or by directly inverting that
equation (see Supplementary Note 1). Numerical computations
with Λ= 1.5 μm indicate that the thermal radiation psf ~Rðx; yÞ
can be made 10-fold smaller than the excitation psf (Fig. 2d).

The above theoretical analysis shows that the superlinearity of
the blackbody radiation response can be made arbitrarily high by
moving the thermal detection to smaller wavelengths, and this
leads to an arbitrarily high spatial compression factor between the
cross-section of the excitation beam and the thermal radiation
signal. Practically however, superlinearity is best achieved when
Λ � λmaxðTref Þ, that is, when the spectral radiance becomes
dramatically weak. Therefore, the photon budget must be assessed
to optimize the trade-off between the detection sensitivity and the
resolution.

Photon budget and suggested conditions for super-resolved
detection. For the sake of the present argument, we consider a
beam scanning excitation scheme and a target object that con-
tains details smaller than the beam cross-section. The thermal
signal is not imaged, but is collected instead with a point
detector, for each position ðx; yÞ of the target relative to the beam
center (Fig. 3a). The signal is a number of photons per second
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Cðx; yÞ given by:

Cðx; yÞ ¼ G PðTref þ ΔTmax
~Iðx; yÞ;ΛÞ; ð7Þ

where the étendue G of the optical system is proportional to the
apparent cross-section of the object seen by the detector and the
solid angle of detection. While the object is scanned, the signal of
interest is collected as a temporal profile CðtÞ, in which the target
should produce a detectable variation from Cref due to the back-
ground temperature to CðTmaxÞ (Fig. 3b). The relevant signal is
therefore the differential count rate ΔC ¼ C � Cref ¼ GR, and the

number of signal photons is the integral
R
scan ΔCdt, which can be

approximated by the product of the maximal rate ΔCmax by the
typical time width τemission of the peak emission. Meanwhile, the
resolution will be limited by the psf compression factor μ intro-
duced above. As expected, ΔCmax and μ vary in opposite ways with
the temperature and the integration wavelength Λ (Fig. 3c1, c2, d),
and a trade-off must be arbitrated between the benefits of the spatial
compression and the need of large enough photon rates (Fig. 3e).

Obviously, the integration time matters tremendously, as well
as the optical étendue G. Because the actual photon budget can
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only be meaningfully discussed if all parameters are considered, a
few practical situations are examined at various scales (micro-
scopic, macroscopic, mid-range, and long range), and for three
different temperature amplitudes (ΔTmax ¼ 50, 100, and 150 K)
above ambient temperature (Tref ¼300 K) in Table 1. A
compression factor μ between 5 and 10 is obtained, but the
major role played by the optical étendue G is such that lower
values of G must be compensated for by relatively larger detection
times to achieve super-resolution. At any rate, the present
analysis can serve the purpose of designing experimental tests of
the new concept proposed here.

Discussion
Historically, super-resolution has been almost exclusively devel-
oped for the field of optical microscopy by successfully taking
advantage of nonlinearities offered by molecular spectroscopy.
We propose here to break the diffraction limit by using the
intrinsic superlinearity of the blackbody radiation, and demon-
strate that it leads in theory to an arbitrarily large compression of
the thermal radiation profile. Our analysis requires no assump-
tion on the physical cause of the local temperature increase
ΔTðx; yÞ nor the scale of the objects involved, opening up new
applications far beyond thermal imaging and microscopy.
Obviously, optically induced heating can be considered, but other
mechanisms could be used, such as focused ultrasounds, for
which the super-resolution argument holds. Regardless of the
nature of the excitation beam, heat diffusion is likely to widen the
psf of the thermal radiation, and pulse excitation schemes are
therefore recommended (Supplementary Note 3).

The detailed analysis of the superlinearity is made here for
the photonic spectral radiance SðT; λÞ and not for the power
spectral radiance SWðT; λÞ ¼ hc

λ SðT; λÞ. The reason is that
quantum detector offer better performances than classical
detectors for low light level applications, but a similar analysis
can be made for the power spectral radiance, which leads to a
slightly smaller but still quite significant superlinearity. We

should also mention here that new quantum detectors, such as
superconducting nanowire single-photon detectors, or HgCdTe
avalanche photodiodes, could be instrumental to implement the
ideas presented in this paper. HgCdTe avalanche photodiodes
for instance provide indeed outstanding performances, with
single-photon sensitivity, virtually no gain noise, and nano-
second time resolution13 from the mid-infrared to the visible
domain. Although we are not aware of probes designed so far to
specifically serve as blackbody radiating probes, we anticipate
that high emissivity biological pigments based on melanin, or
recently proposed sub-micron probes that withstand high
temperatures14–16, could be used to test our concept. In the
context of these recent progresses on detectors and novel
materials, the present work potentially broadens the scope of
super-resolution beyond its historic microscopy niche, and
should encourage its extension to a very broad spectrum of
detection and imaging methods at all spatial scales and with a
much broader diversity of objects.

Methods
The mathematical derivation of this analytical work was done by hand while the
numerical simulations were performed with basic Matlab routines.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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