475 research outputs found

    Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model

    Get PDF
    Sleep is essential for the maintenance of the brain and the body, yet many features of sleep are poorly understood and mathematical models are an important tool for probing proposed biological mechanisms. The most well-known mathematical model of sleep regulation, the two-process model, models the sleep-wake cycle by two oscillators: a circadian oscillator and a homeostatic oscillator. An alternative, more recent, model considers the mutual inhibition of sleep promoting neurons and the ascending arousal system regulated by homeostatic and circadian processes. Here we show there are fundamental similarities between these two models. The implications are illustrated with two important sleep-wake phenomena. Firstly, we show that in the two-process model, transitions between different numbers of daily sleep episodes occur at grazing bifurcations.This provides the theoretical underpinning for numerical results showing that the sleep patterns of many mammals can be explained by the mutual inhibition model. Secondly, we show that when sleep deprivation disrupts the sleep-wake cycle, ostensibly different measures of sleepiness in the two models are closely related. The demonstration of the mathematical similarities of the two models is valuable because not only does it allow some features of the two-process model to be interpreted physiologically but it also means that knowledge gained from study of the two-process model can be used to inform understanding of the mutual inhibition model. This is important because the mutual inhibition model and its extensions are increasingly being used as a tool to understand a diverse range of sleep-wake phenomena such as the design of optimal shift-patterns, yet the values it uses for parameters associated with the circadian and homeostatic processes are very different from those that have been experimentally measured in the context of the two-process model

    Correcting non-independent and non-identically distributed errors with surface codes

    Get PDF
    A common approach to studying the performance of quantum error correcting codes is to assume independent and identically distributed single-qubit errors. However, the available experimental data shows that realistic errors in modern multi-qubit devices are typically neither independent nor identical across qubits. In this work, we develop and investigate the properties of topological surface codes adapted to a known noise structure by Clifford conjugations. We show that the surface code locally tailored to non-uniform single-qubit noise in conjunction with a scalable matching decoder yields an increase in error thresholds and exponential suppression of sub-threshold failure rates when compared to the standard surface code. Furthermore, we study the behaviour of the tailored surface code under local two-qubit noise and show the role that code degeneracy plays in correcting such noise. The proposed methods do not require additional overhead in terms of the number of qubits or gates and use a standard matching decoder, hence come at no extra cost compared to the standard surface-code error correction

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech

    Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.

    Get PDF
    BACKGROUND: Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects. METHODOLOGY/PRINCIPAL FINDINGS: Male rat pups received a course of dexamethasone (Dex), or Dex with vitamins C and E (DexCE), on postnatal days 1-6 (P1-6). Controls received vehicle (Ctrl) or vehicle with vitamins (CtrlCE). At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05). Constrictor responses to phenylephrine (PE) and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05); effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05). Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05); however, this effect was not restored in DexCE (68.3+/-8.3, AUC). Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax) and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05). CONCLUSIONS/SIGNIFICANCE: Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function

    Nematic-Isotropic Spinodal Decomposition Kinetics of Rod-like Viruses

    Get PDF
    We investigate spinodal decomposition kinetics of an initially nematic dispersion of rod-like viruses (fd virus). Quench experiments are performed from a flow-stabilized homogeneous nematic state at high shear rate into the two-phase isotropic-nematic coexistence region at zero shear rate. We present experimental evidence that spinodal decomposition is driven by orientational diffusion, in accordance with a very recent theory.Comment: 17 pages, 6 figures, accepted in Phys. Rev.

    Determination of the liquid-phase speciation in the MDEA-H2O-CO2 system

    Get PDF
    AbstractAqueous solutions of alkanolamines are commonly used in CO2 capture processes. To describe these complex processes rigorous mass transfer models are needed, in which all mass transfer, kinetics and thermodynamics are incorporated correctly. To improve the quality of the thermodynamic models, not only commonly used P-α (CO2 partial pressure versus CO2 liquid loading) experimental data, but also liquid phase speciation data are important. Speciation data of amine-H2O-CO2 data are very scarce in literature. In this work speciation data of MDEA-H2O-CO2 have been determined experimentally with a Fourier Transform Infra-Red spectrometer (FTIR) at ambient temperature. After several calibration lines were prepared, the speciation of this system was determined online in the FTIR. The experimental data presented in this work were well in line with speciation from open literature

    Training quantum embedding kernels on near-term quantum computers

    Get PDF
    Kernel methods are a cornerstone of classical machine learning. The idea of using quantum computers to compute kernels has recently attracted attention. Quantum embedding kernels (QEKs), constructed by embedding data into the Hilbert space of a quantum computer, are a particular quantum kernel technique that is particularly suitable for noisy intermediate-scale quantum devices. Unfortunately, kernel methods face three major problems: Constructing the kernel matrix has quadratic computational complexity in the number of training samples, choosing the right kernel function is nontrivial, and the effects of noise are unknown. In this work, we addressed the latter two. In particular, we introduced the notion of trainable QEKs, based on the idea of classical model optimization methods. To train the parameters of the QEK, we proposed the use of kernel-target alignment. We verified the feasibility of this method, and showed that for our experimental setup we could reduce the training error significantly. Furthermore, we investigated the effects of device and finite sampling noise, and we evaluated various mitigation techniques numerically on classical hardware. We took the best performing strategy and evaluated it on data from a real quantum processing unit. We found that using this mitigation strategy demonstrated an increased kernel matrix quality

    The interrelation of needs and quality of life in first-episode schizophrenia

    Get PDF
    The interrelation between needs for care and quality of life has been described and replicated by several studies. The present work aims to add to the understanding of longitudinal interrelations between needs for care, quality of life, and other outcome measures by analyzing a sample of patients at the onset of schizophrenia. This study relied on data from the EUFEST trial, designed to compare first- and second-generation antipsychotics during 1year. At baseline, 498 patients have been included. The first (baseline) and the last assessment (12months after baseline) were used for the analyses. Predictors of quality of life were determined using regression analyses. We tested the complex longitudinal interrelations between baseline and outcome measures with structural equation models. Unmet needs were not definitively confirmed as a predictor of subsequent quality of life, unless unmet needs changing to no needs were separated from unmet needs changing to met needs. Each unmet need that changed to no need enhanced the quality of life (mean score 1-7) by 0.136 scale points. This study suggests that when studying quality of life and needs for treatment, it is crucial to differentiate whether unmet needs disappeared or whether they were met, as the former has a stronger impact on quality of lif

    Dental implant register : summary and consensus statements of group 2. The 5th EAO consensus conference 2018

    Get PDF
    Objectives: This publication reports the EAO Workshop group-2 and consensus plenary discussions and statements on a narrative review providing the background and possible facilities and importance of a dental implant register, to allow for a systematic follow-up of the clinical outcome of dental implant treatment in various clinical settings. It should be observed that the format of the review and the subsequent consensus report consciously departs from conventional consensus publications and reports. Material and methods: The publication was a narrative review on the presence and significance of quality registers regarding select medical conditions and procedures. The group discussed and evaluated the publication and made corrections and recommendations to the authors and agreed on the statements and recommendations described in this consensus report. Results: Possible registrations to be included in an implant register were discussed and agreed as a preliminary basis for further development, meaning that additional parameters be included or some be deleted. Conclusions: It was agreed to bring the idea of an implant quality register, including the presented results of discussions and proposals by the group- and plenary sessions, to the EAO Board for further discussion and decision
    • …
    corecore