511 research outputs found

    The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    Get PDF
    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH<sub>4</sub>), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NO<sub>x</sub>) up to the year 2030 and implemented them in two global Chemistry Transport Models. The 'Current Legislation' (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a 'Maximum technically Feasible Reduction' (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NO<sub>x</sub>, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH<sub>4</sub>, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH<sub>4</sub> concentrations from 1990 to 2002. <P style='line-height: 20px;'> For the 'current legislation' case, both models indicate an increase of the annual average ozone levels in the Northern Hemisphere by 5ppbv, and up to 15ppbv over the Indian sub-continent, comparing the 2020s (2020-2030) with the 1990s (1990-2000). The corresponding higher ozone and methane burdens in the atmosphere increase radiative forcing by approximately 0.2 Wm<sup>-2</sup>. Full application of today's emissions control technologies, however, would bring down ozone below the levels experienced in the 1990s and would reduce the radiative forcing of ozone and methane to approximately -0.1 Wm<sup>-2</sup>. This can be compared to the 0.14-0.47 Wm<sup>-2</sup> increase of methane and ozone radiative forcings associated with the SRES scenarios. While methane reductions lead to lower ozone burdens and to less radiative forcing, further reductions of the air pollutants NO<sub>x</sub> and NMVOC result in lower ozone, but at the same time increase the lifetime of methane. Control of methane emissions appears an efficient option to reduce tropospheric ozone as well as radiative forcing

    Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Get PDF
    We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to -2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by -1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time

    Hydroxyl radicals maintain the self-cleansing capacity of the troposphere

    No full text
    International audienceBillions of tons natural and anthropogenic gases are released and subsequently removed from the troposphere each year. Photochemical reactions, initiated by hydroxyl (OH) radicals, oxidise most gases to products which are more easily removed by precipitation and dry deposition at the Earth's surface. Since human-induced pollution emissions strongly affect OH formation and loss, large global changes in OH concentrations are possible. The available evidence as reviewed here, however, indicates that global mean OH has changed relatively little in the past century. Depletion of OH by reactive carbon gases has been compensated by increased OH formation by nitrogen oxides, an act of "inadvertent geo-engineering". Analyses of global mean OH for the past 2.5 decades, however, partly based on methyl chloroform measurements, are ambiguous. Especially the OH trend in the 1990s based on these analyses is at odds with present understanding. Since the discrepancy is dominated by the uncertainty in methyl chloroform emission estimates, improvements of source inventories and model analyses, combined with continued high precision methyl chloroform measurements, will help resolve this problem

    A GCM study of future climate response to aerosol pollution reductions

    Get PDF
    We use the global atmospheric GCM aerosol model ECHAM5-HAM to asses possible impacts of future air pollution mitigation strategies on climate. Air quality control strategies focus on the reduction of aerosol emissions. Here we investigate the extreme case of a maximum feasible end-of-pipe abatement of aerosols in the near term future (2030) in combination with increasing greenhouse gas (GHG) concentrations. The temperature response of increasing GHG concentrations and reduced aerosol emissions leads to a global annual mean equilibrium temperature response of 2.18 K. When aerosols are maximally abated only in the Industry and Powerplant sector, while other sectors stay with currently enforced regulations, the temperature response is 1.89 K. A maximum feasible abatement applied in the Domestic and Transport sector, while other sectors remain with the current legislation, leads to a temperature response of 1.39 K. Increasing GHG concentrations alone lead to a temperature response of 1.20 K. We also simulate 2–5% increases in global mean precipitation among all scenarios considered, and the hydrological sensitivity is found to be significantly higher for aerosols than for GHGs. Our study, thus highlights the huge potential impact of future air pollution mitigation strategies on climate and supports the need for urgent GHG emission reductions. GHG and aerosol forcings are not independent as both affect and are influenced by changes in the hydrological cycle. However, within the given range of changes in aerosol emissions and GHG concentrations considered in this study, the climate response towards increasing GHG concentrations and decreasing aerosols emissions is additive

    The nitrate aerosol field over Europe: simulations with an atmospheric chemistry-transport model of intermediate complexity

    No full text
    International audienceNitrate is an important component of fine aerosols in Europe. We present a model simulation for the year 1995 in which we account for the formation of the ammonium nitrate, a semi volatile component. For this purpose, LOTOS, a chemistry-transport model of intermediate complexity, was extended with a thermodynamic equilibrium module and additional relevant processes to account for aerosol formation and deposition. Our earlier analysis of data on (ammonium) nitrate in Europe was used for model evaluation. During winter, fall and especially spring high nitrate levels are projected over north western, central and eastern Europe. During winter nitrate concentrations are highest in the Po valley, Italy. This is in accordance with the field that was constructed from the data. In winter nitric acid, the precursor for aerosol nitrate, is formed through heterogeneous reactions on the surface of aerosols. Appreciable ammonium nitrate concentrations in summer are limited to those areas with high ammonia emissions, e.g. The Netherlands, since high ammonia concentrations are necessary to stabilise this aerosol component at high temperatures. Averaged over all stations the model reproduces the measured concentrations for NO3, SO4, NH4, TNO3, TNH4 and SO2 within 20%. The daily variation is captured well, albeit that the model does not always represents the amplitude of single events. The model underestimates wet deposition which was attributed to the crude representation of cloud processes. The treatment of ammonia was found to be the major source for uncertainties in the model representation of secondary aerosols. Also, inclusion of sea salt is necessary to properly assess the nitrate and nitric acid levels in marine areas. Over Europe the annual forcing by nitrate is calculated to be 25% of that by sulphate. In summer nitrate is found to be regionally important, e.g. in The Netherlands, where the forcing of nitrate and sulphate are calculated to be equal. In winter, spring and fall the nitrate forcing over Europe is about half that by sulphate. Over north western Europe and the alpine region the forcing by nitrate was calculated to be similar to that of sulphate. Overall, nitrate forcing is significant and should be taken into account to estimate the impact of regional climate change in Europe

    Secondary inorganic aerosol simulations for Europe with special attention to nitrate

    No full text
    International audienceNitrate is an important component of (secondary inorganic) fine aerosols in Europe. We present a model simulation for the year 1995 in which we account for the formation of secondary inorganic aerosols including ammonium sulphate and ammonium nitrate, a semi volatile component. For this purpose, the chemistry-transport model LOTOS was extended with a thermodynamic equilibrium module and additional relevant processes to account for secondary aerosol formation and deposition. During winter, fall and especially spring high nitrate levels are projected over north western, central and eastern Europe. During winter nitrate concentrations are highest in Italy, in accordance with observed data. In winter nitric acid, the precursor for aerosol nitrate is formed through heterogeneous reactions on the surface of aerosols. Modelled and observed sulphate concentrations show little seasonal variation. Compared to sulphate levels, appreciable ammonium nitrate concentrations in summer are limited to those areas with high ammonia emissions, e.g. the Netherlands, since high ammonia concentrations are necessary to stabilise this aerosol component at high temperatures. As a consequence of the strong seasonal variation in nitrate levels the AOD depth of nitrate over Europe is especially significant compared to that of sulphate in winter and spring when equal AOD values are calculated over large parts of Europe. Averaged over all stations the model reproduces the measured concentrations for NO3, SO4, NH4, TNO3 (HNO3+NO3), TNH4 (NH3+NH4) and SO2 within 20%. The daily variation is captured well, albeit that the model does not always represent the amplitude of single events. The model underestimates wet deposition which was attributed to the crude representation of cloud processes. Comparison of retrieved and computed aerosol optical depth (AOD) showed that the model underestimates AOD significantly, which was expected due to the lack of carbonaceous aerosols, sea salt and dust in the model. The treatment of ammonia was found to be a major source for uncertainties in the model representation of secondary aerosols. Also, inclusion of sea salt is necessary to properly assess the nitrate and nitric acid levels in marine areas

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    Audio vs. Video: Does Viewing Support Learning? A Comparision of an Audio-Visual with an Auditory Virtual Lecture

    Get PDF
    Häufig wird behauptet, dass audiovisuelle Informationen gegenüber auditiven lernwirksamer sind. Dies wird meist mit der kognitiv-anregenden Funktion begründet, die der audiovisuellen Darstellung zugeschrieben wird. Bisherige empirische Arbeiten konnten das auch tendenziell bestätigen; allerdings beziehen sich diese Befunde überwiegend auf das video- oder fernsehgestützte Lernen, bei dem den Lernenden keine zusätzlichen textbasierten Informationen zur Verfügung stehen. Für den Bereich der virtuellen Vorlesung wurde noch nicht untersucht, ob sich eine audiovisuelle Präsentation des Vortragenden gegenüber einer rein auditiven Präsentation positiv auf den Lernerfolg auswirkt. In einer empirischen Studie mit 61 Versuchspersonen wurde daher Lernenden ein Ausschnitt aus einer Online-Vorlesung in zwei Variationen präsentiert. Während die eine Gruppe eine Lerneinheit bearbeitete, in der sie neben textbasierten Informationen eine Videosequenz (Aufnahme des Dozenten) präsentiert bekam, bearbeitete die zweite Gruppe die gleiche Lerneinheit; hier war jedoch nur die Stimme des Dozenten hörbar. In einem direkt anschließenden Wissens- und späteren Behaltenstest zeigten sich keine signifikanten Leistungsunterschiede zwischen den beiden Gruppen. Jedoch berichtete die Mehrheit der Versuchspersonen, dass sie die Videovariante für affektiv-unterstützender hält als die Tonvariante. (ZPID
    corecore