57 research outputs found

    Microbiota and host determinants of behavioural phenotype in maternally separated mice

    Get PDF
    Early-life stress is a determinant of vulnerability to a variety of disorders that include dysfunction of the brain and gut. Here we exploit a model of early-life stress, maternal separation (MS) in mice, to investigate the role of the intestinal microbiota in the development of impaired gut function and altered behaviour later in life. Using germ-free and specific pathogen-free mice, we demonstrate that MS alters the hypothalamic-pituitary-adrenal axis and colonic cholinergic neural regulation in a microbiota-independent fashion. However, microbiota is required for the induction of anxiety-like behaviour and behavioural despair. Colonization of adult germ-free MS and control mice with the same microbiota produces distinct microbial profiles, which are associated with altered behaviour in MS, but not in control mice. These results indicate that MS-induced changes in host physiology lead to intestinal dysbiosis, which is a critical determinant of the abnormal behaviour that characterizes this model of early-life stress

    Impact of Crop Diversification on Household Food and Nutrition Security in Southern and Central Mali

    Get PDF
    Many African countries, including Mali, depend on the production of a single or a limited range of crops for national food security. In Mali, this heavy reliance on a range of basic commodities or staple crops, or even just one, exacerbates multiple risks to agricultural production, rural livelihoods, and nutrition. With this in mind, the smart food campaign was initiated to strengthen the resilience and nutritional situation of households and peasant communities where the diet is mainly cereal-based and remains very undiversified and poor in essential micronutrients. As part of the campaign, our study aims to analyze the impact of agricultural diversification on food consumption and household nutritional security. The analysis uses survey data from 332 individuals randomly selected. Multinomial logistic regression and the Simpson diversity index were used to determine the index and estimate the determinants of crop diversification. The consumption score index weighted by consumption frequency and anthropometric indices (for children) were used to assess the nutritional status of households. The results show four types of strategies of diversification: 7.55% are cereals only, 5.66% combine millet–sorghum–groundnut, 41.51% combine millet–sorghum–groundnut–cowpea, and 45.28% combine millet–sorghum–groundnut–cowpea–maize. The estimation of the regression model shows that socioeconomic factors have a positive influence. With a consumption score index of 34 in the villages and 40.5 in Bamako, based on eight food groups, we find that the quality of food is insufficient in rural areas, but it is acceptable in the urban center of Bamako. Analysis of the nutritional status of children aged 6–48 months reveals that 30% of the surveyed population is in a situation of nutritional insecurity (all forms combined). To help improve crop diversification and the nutritional quality of foods, we suggest, among other things, subsidies and public spending tofacilitate access to inputs that allow the acquisition of a wider range of inputs and services, intensification of nutrition awareness, and education programs to maximize the incentive to consume nutritious foods from self-production and market purchases. Finally, we propose to facilitate access to technologies promoting food diversification and improving food and nutritional security, particularly in rural areas

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms

    Get PDF
    Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure

    Carbohydrate Metabolism Is Essential for the Colonization of Streptococcus thermophilus in the Digestive Tract of Gnotobiotic Rats

    Get PDF
    Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance

    Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species

    Get PDF
    Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants

    Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities

    Get PDF
    Microbial interactions in natural microbiota are, in many cases, crucial for the sustenance of the communities, but the precise nature of these interactions remain largely unknown because of the inherent complexity and difficulties in laboratory cultivation. Conventional pure culture-oriented cultivation does not account for these interactions mediated by small molecules, which severely limits its utility in cultivating and studying “unculturable” microorganisms from synergistic communities. In this study, we developed a simple microfluidic device for highly parallel co-cultivation of symbiotic microbial communities and demonstrated its effectiveness in discovering synergistic interactions among microbes. Using aqueous micro-droplets dispersed in a continuous oil phase, the device could readily encapsulate and co-cultivate subsets of a community. A large number of droplets, up to ∼1,400 in a 10 mm×5 mm chamber, were generated with a frequency of 500 droplets/sec. A synthetic model system consisting of cross-feeding E. coli mutants was used to mimic compositions of symbionts and other microbes in natural microbial communities. Our device was able to detect a pair-wise symbiotic relationship when one partner accounted for as low as 1% of the total population or each symbiont was about 3% of the artificial community

    T4-Related Bacteriophage LIMEstone Isolates for the Control of Soft Rot on Potato Caused by ‘Dickeya solani’

    Get PDF
    The bacterium ‘Dickeya solani’, an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with ‘Dickeya solani’, the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics

    Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice

    Get PDF
    BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota

    Global Perspectives on Task Shifting and Task Sharing in Neurosurgery.

    Get PDF
    BACKGROUND: Neurosurgical task shifting and task sharing (TS/S), delegating clinical care to non-neurosurgeons, is ongoing in many hospital systems in which neurosurgeons are scarce. Although TS/S can increase access to treatment, it remains highly controversial. This survey investigated perceptions of neurosurgical TS/S to elucidate whether it is a permissible temporary solution to the global workforce deficit. METHODS: The survey was distributed to a convenience sample of individuals providing neurosurgical care. A digital survey link was distributed through electronic mailing lists of continental neurosurgical societies and various collectives, conference announcements, and social media platforms (July 2018-January 2019). Data were analyzed by descriptive statistics and univariate regression of Likert Scale scores. RESULTS: Survey respondents represented 105 of 194 World Health Organization member countries (54.1%; 391 respondents, 162 from high-income countries and 229 from low- and middle-income countries [LMICs]). The most agreed on statement was that task sharing is preferred to task shifting. There was broad consensus that both task shifting and task sharing should require competency-based evaluation, standardized training endorsed by governing organizations, and maintenance of certification. When perspectives were stratified by income class, LMICs were significantly more likely to agree that task shifting is professionally disruptive to traditional training, task sharing should be a priority where human resources are scarce, and to call for additional TS/S regulation, such as certification and formal consultation with a neurosurgeon (in person or electronic/telemedicine). CONCLUSIONS: Both LMIC and high-income countries agreed that task sharing should be prioritized over task shifting and that additional recommendations and regulations could enhance care. These data invite future discussions on policy and training programs
    corecore