10 research outputs found

    Male silver eels mature by swimming

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>If European silver eels are prevented from reproductive migration, they remain in a prepubertal stage by dopaminergic inhibition of pituitary activity. Because this inhibition is likely a requirement for an extended female growth stage, we tested if it is sex-specific by subjecting both sexes to stimulation by GnRHa (Gonadotropin-Releasing Hormone agonist) – injection or 3-months swimming in seawater.</p> <p>Results</p> <p>In contrast to females, males showed a two- to three-fold higher LHβ (luteinising hormone β subunit) – expression, a three- to five-fold higher GSI (Gonadosomatic index) and induced spermatogenesis when compared with the untreated control group.</p> <p>Conclusion</p> <p>Dopaminergic inhibition is thus not effective in males and swimming results in natural maturation, probably via GnRH-release.</p

    Using Nano Zero-Valent Iron Supported on Diatomite to Remove Acid Blue Dye: Synthesis, Characterization, and Toxicology Test

    No full text
    This work aimed to synthesize and characterize nanoscale zero-valent iron (nZVI), supported on diatomaceous earth (DE) at two different molar concentrations, 3 and 4 M (nZVI-DE-1 nZVI-DE-2), to test the decolorization treatment of acid blue dye (AB) and perform a toxicological test using zebrafish. The synthesis of the nanoparticles was obtained using the chemical reduction method. The material was fully characterized by X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy and specific surface area (BET). The results showed spherical forms in clusters between 20 and 40 nm of zero-valent iron supported on diatomaceous earth. The removal of 1 g/L of AB from water treated with nZVI-DE-1 and nZVI-DE-2 reached the decolorization of 90% and 98% of all dye. By contrast, controls such as nZVI and DE-1 and DE-2 removed 40%, 37%, and 24% of the dye. Toxicological analysis using zebrafish showed that AB causes a severe defect in development, and embryos die after exposure. However, the water samples treated with nZVI-DE-1 and nZVI-DE-2 are not harmful to the zebrafish embryos during the first 24 h. However, all embryos exposed to the new material for more than 48 hpf had cardiac edema, smaller eyes, and curved and smaller bodies with less pigmentation

    Swimming suppresses hepatic vitellogenesis in European female silver eels as shown by expression of the estrogen receptor 1, vitellogenin1 and vitellogenin2 in the liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When European silver eels (Anguilla anguilla) venture into the Atlantic Ocean for their 6,000 km semelparous spawning run to the Sargasso Sea, they are still in a prepubertal stage. Further sexual development appears to be blocked by dopaminergic inhibition of hypothalamus and pituitary activity. Recently, we found that swimming for several weeks in freshwater stimulated the incorporation of fat droplets in the oocytes. So, it was hypothesized that long term swimming in seawater would release the inhibition further and would also stimulate the production of vitellogenin by the liver.</p> <p>Methods</p> <p>For this study a swim-flume was constructed to allow simulated migration of migratory female silver eels for 3 months (1,420 km) in natural seawater at 20 degrees C. Primers were designed for polymerase chain reactions to measure the mRNA expression of estrogen receptor 1 (esr1), vitellogenin1 (vtg1) and vitellogenin2 (vtg2) genes in the liver of European female silver eels.</p> <p>Results</p> <p>In comparison to resting eels, swimming eels showed a diminished expression of esr1, vtg1 and vtg2 in the liver. They also had lower plasma calcium (Ca; indicative of vitellogenin) levels in their blood. This showed that vitellogenesis is more strongly suppressed in swimming than in resting eels. However, when eels were subsequently stimulated by 3 weekly carp pituitary extract injections, the expression of the same genes and plasma levels of Ca strongly increased in both groups to similar levels, thus equalizing the initial differences between resting and swimming.</p> <p>Conclusions</p> <p>It is concluded that vitellogenesis remains suppressed during resting and even more during swimming. The fact that swimming stimulates fat deposition in the oocytes but suppresses vitellogenesis indicates that these events are separated in nature and occur sequentially. Swimming-suppressed vitellogenesis may imply that in nature eels undergo vitellogenesis and final maturation near or at the spawning grounds.</p
    corecore