643 research outputs found

    5d-5f Electric-multipole Transitions in Uranium Dioxide Probed by Non-resonant Inelastic X-ray Scattering

    Full text link
    Non-resonant inelastic x ray scattering (NIXS) experiments have been performed to probe the 5d-5f electronic transitions at the uranium O(4,5) absorption edges in uranium dioxide. For small values of the scattering vector q, the spectra are dominated by dipole-allowed transitions encapsulated within the giant resonance, whereas for higher values of q the multipolar transitions of rank 3 and 5 give rise to strong and well-defined multiplet structure in the pre-edge region. The origin of the observed non-dipole multiplet structures is explained on the basis of many-electron atomic spectral calculations. The results obtained demonstrate the high potential of NIXS as a bulk-sensitive technique for the characterization of the electronic properties of actinide materials.Comment: Submitted to Physical Review Letters on 31 December 200

    The c-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole

    Get PDF
    We have assessed the ability of the plant secretory pathway to handle the expression of complex heterologous proteins by investigating the fate of a hybrid immunoglobulin A/G in tobacco cells. Although plant cells can express large amounts of the antibody, a relevant proportion is normally lost to vacuolar sorting and degradation. Here we show that the synthesis of high amounts of IgA/G does not impose stress on the plant secretory pathway. Plant cells can assemble antibody chains with high efficiency and vacuolar transport occurs only after the assembled immunoglobulins have traveled through the Golgi complex. We prove that vacuolar delivery of IgA/G depends on the presence of a cryptic sorting signal in the tailpiece of the IgA/G heavy chain. We also show that unassembled light chains are efficiently secreted as monomers by the plant secretory pathway

    Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection

    No full text
    Objective Helicobacter pylori causes life-long colonisation of the gastric mucosa, leading to chronic inflammation with increased risk of gastric cancer. Research on the pathogenesis of this infection would strongly benefit from an authentic human in vitro model. Design Antrum-derived gastric glands from surgery specimens served to establish polarised epithelial monolayers via a transient air–liquid interface culture stage to study cross-talk with H. pylori and the adjacent stroma. Results The resulting ‘mucosoid cultures’, so named because they recapitulate key characteristics of the gastric mucosa, represent normal stem cell-driven cultures that can be passaged for months. These highly polarised columnar epithelial layers encompass the various gastric antral cell types and secrete mucus at the apical surface. By default, they differentiate towards a foveolar, MUC5AC-producing phenotype, whereas Wnt signalling stimulates proliferation of MUC6-producing cells and preserves stemness—reminiscent of the gland base. Stromal cells from the lamina propria secrete Wnt inhibitors, antagonising stem-cell niche signalling and inducing differentiation. On infection with H. pylori, a strong inflammatory response is induced preferentially in the undifferentiated basal cell phenotype. Infection of cultures for several weeks produces foci of viable bacteria and a persistent inflammatory condition, while the secreted mucus establishes a barrier that only few bacteria manage to overcome. Conclusion Gastric mucosoid cultures faithfully reproduce the features of normal human gastric epithelium, enabling new approaches for investigating the interaction of H. pylori with the epithelial surface and the cross-talk with the basolateral stromal compartment. Our observations provide striking insights in the regulatory circuits of inflammation and defence.</p

    Electronic structure investigation of the cubic inverse perovskite Sc3AlN

    Full text link
    The electronic structure and chemical bonding of the recently discovered inverse perovskite Sc3AlN, in comparison to ScN and Sc metal have been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Sc L, N K, Al L1, and Al L2,3 emission spectra are compared with calculated spectra using first principle density-functional theory including dipole transition matrix elements. The main Sc 3d - N 2p and Sc 3d - Al 3p chemical bond regions are identified at -4 eV and -1.4 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states in the Al L2,3 emission from Sc3AlN in comparison to pure Al metal is found, which reflects the Sc 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic structure of Sc3AlN, ScN, and Sc metal are discussed in relation to the change of the conductivity and elastic properties.Comment: 11 pages, 5 picture

    Simulation of the satellite integration and test process

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1995.Includes bibliographical references (leaves 101-104).by Johan C. Denecke.M.S

    Thermal neutron induced (n,p) and (n,alpha) reactions on 37Ar

    Full text link
    The 37Ar(n_th,alpha)34S and 37Ar(n_th,p)37Cl reactions were studied at the high flux reactor of the ILL in Grenoble. For the 37Ar(n_th,alpha_0) and 37Ar(n_th,p) reaction cross sections, values of (1070+/-80)b and (37+/-4)b, respectively, were obtained. Both values are about a factor 2 smaller than results of older measurements. The observed suppression of the 37(n_th,alpha_1) transition could be verified from theoretical considerations. Finally, evidence was found for the two-step 37Ar(n_th,gamma-alpha) process.Comment: 11 pages, 5 figures, accepted for publication in Nuclear Physics

    Characterisation of Nd-doped calcium aluminosilicate parent glasses designed for the preparation of zirconolite-based glass-ceramic waste forms

    Get PDF
    4 pagesZirconolite-based (nominally CaZrTi2O7) glass-ceramics belonging to the SiO2-Al2O3-CaO-ZrO2-TiO2 system are good waste forms for the specific immobilisation of actinides. The understanding of their crystallisation processes implies to investigate the structure of the glass. Thus, the environment around Ti, Zr (nucleating agents) and Nd (trivalent actinides surrogate) was characterised in parent glasses. Electron spin resonance (ESR) study of the small amount of Ti3+ occurring in the glass enabled to identify two types of sites for titanium: the main one is of C4v or D4h symmetry. EXAFS showed that Zr occupied a quite well defined 6-7-fold coordinated site with second neighbours which could correspond to Ca/Ti and Zr. Nd environment was probed by optical spectroscopies (absorption, fluorescence), ESR and EXAFS. All these techniques demonstrated that the environment around Nd was very constrained by the glassy network. Notably, Nd occupies a highly distorted 8-9-fold coordinated site in the parent glass

    Bonding mechanism in the nitrides Ti2AlN and TiN: an experimental and theoretical investigation

    Full text link
    The electronic structure of nanolaminate Ti2AlN and TiN thin films has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, N K, Al L1 and Al L2,3 emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole transition matrix elements. Three different types of bond regions are identified; a relatively weak Ti 3d - Al 3p bonding between -1 and -2 eV below the Fermi level, and Ti 3d - N 2p and Ti 3d - N 2s bonding which are deeper in energy observed at -4.8 eV and -15 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states of Al L2,3 emission from Ti2AlN in comparison to pure Al metal is found, which reflects the Ti 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic and crystal structures of Ti2AlN and TiN are discussed in relation to the intercalated Al layers of the former compound and the change of the materials properties in comparison to the isostructural carbides.Comment: 18 pages, 7 figures; http://link.aps.org/doi/10.1103/PhysRevB.76.19512
    corecore