189 research outputs found

    Jet propulsion without inertia

    Full text link
    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate, and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria

    Chronic symptoms in a representative sample of community-dwelling older people: a cross-sectional study in Switzerland.

    Get PDF
    The burden of multiple diagnoses is well documented in older people, but less is known about chronic symptoms, many of which are even not brought to medical attention. This study aimed to determine the prevalence of chronic symptoms, their relationships with disability in basic activities of daily living (BADL) and quality of life (QoL), and their public health impact. A large cross-sectional population-based study. Community in 2 regions of French-speaking Switzerland. Community-dwelling older adults aged 68 years and older in 2011 (N=5300). Disability in BADL defined as difficulty or help needed with any of dressing, bathing, eating, getting in/out of bed or an arm chair, and using the toilet. Overall QoL dichotomised as favourable (ie, excellent or very good) or unfavourable (ie, good, fair or poor). Disturbance by any of the following 14 chronic symptoms for at least 6 months: joint pain, back pain, chest pain, dyspnoea, persistent cough, swollen legs, memory gaps, difficulty concentrating, difficulty making decisions, dizziness/vertigo, skin problems, stomach/intestine problems, urinary incontinence and impaired sexual life. Only 17.1% of participants did not report being disturbed by any of these chronic symptoms. Weighted prevalence ranged from 3.1% (chest pain) to 47.7% (joint pain). Most chronic symptoms were significantly associated with disability in BADL or unfavourable QoL, with substantial gender differences. The number of chronic symptoms was significantly associated with disability in BADL and unfavourable QoL, with gradients suggesting dose-response relationships. Joint pain and back pain had the highest population attributable fractions. Chronic symptoms are highly prevalent in older people, and are associated with disability in BADL and unfavourable QoL, particularly when multiple chronic symptoms co-occur. Owing to their high public health impact, musculoskeletal chronic symptoms represent good targets for preventive interventions

    Stabilized immersed isogeometric analysis for the Navier-Stokes-Cahn-Hilliard equations, with applications to binary-fluid flow through porous media

    Full text link
    Binary-fluid flows can be modeled using the Navier-Stokes-Cahn-Hilliard equations, which represent the boundary between the fluid constituents by a diffuse interface. The diffuse-interface model allows for complex geometries and topological changes of the binary-fluid interface. In this work, we propose an immersed isogeometric analysis framework to solve the Navier-Stokes-Cahn-Hilliard equations on domains with geometrically complex external binary-fluid boundaries. The use of optimal-regularity B-splines results in a computationally efficient higher-order method. The key features of the proposed framework are a generalized Navier-slip boundary condition for the tangential velocity components, Nitsche's method for the convective impermeability boundary condition, and skeleton- and ghost-penalties to guarantee stability. A binary-fluid Taylor-Couette flow is considered for benchmarking. Porous medium simulations demonstrate the ability of the immersed isogeometric analysis framework to model complex binary-fluid flow phenomena such as break-up and coalescence in complex geometries

    Thermo-mechanical analysis of dental silicone polymers

    Get PDF
    Soft lining materials are used to replace the inner surface of a conventional complete denture, especially for weak elderly patients, with delicate health who cannot tolerate the hard acrylic denture base. Most of these patients have fragile supporting mucosa, excessive residual ridge resorption, particularly on the mandibular arch. The application of a soft liner to the mandibular denture allows absorbing impact forces during mastication and relieving oral mucosa. Actually, the silicone rubbers constitute the main family of commercialised soft lining materials. This study was conducted to understand the relationships between the mechanical properties and the physical structure of polysiloxanes. For this purpose, a series of polysiloxanes of various chemical compositions have been investigated. The evolution of their physical structure as a function of temperature has been followed by differential scanning calorimetry (DSC). In order to facilitate comparisons, the mechanical modulus has been analysed upon the same heating rate using dynamic mechanical analysis (DMA). Polysiloxanes actually commercialised as soft denture liners are three-dimensional networks: the flexibility of chains allows a crystalline organisation in an amorphous phase leading to the low value of the shear modulus. The dynamic mechanical analysis shows that they are used in the rubbery state. So, polysiloxanes have steady mechanical properties during physiological utilisation

    Computationally Assisted Identification of Functional Inorganic Materials

    Get PDF
    Modules of Desire Using computational methods to design materials with specific properties has found some limited success. Dyer et al. (p. 847 , published online 11 April) have devised a method, based on extended module materials assembly, that combines chemical intuition and ab initio calculations starting from fragments or modules of structure types that show the desired functionality. The method was tested by identifying materials suitable for a solid oxide fuel cell cathode. </jats:p

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress

    Global and regional burden of hospital admissions for pneumonia in older adults::A systematic review and meta-analysis

    Get PDF
    Pneumonia constitutes a substantial disease burden among adults overall and those who are elderly. We aimed to identify all studies investigating the disease burden among older adults (age, ≥65 years) admitted to the hospital with pneumonia. We estimated the hospital admission rate and in-hospital case-fatality ratio (CFR) of pneumonia in older adults, stratified by age and economic status (industrialized vs developing), with data from a systematic review of studies published from 1996 through 2017 and from 8 unpublished population-based studies. We applied these rate estimates to population estimates for 2015 to calculate the global and regional burden in older adults who would have been admitted to the hospital with pneumonia that year. We estimated the number of in-hospital pneumonia deaths by combining in-hospital CFRs with hospital admission estimates from hospital-based studies. We identified 109 eligible studies; 73 used clinical pneumonia as the case definition, and 36 used radiologically confirmed pneumonia as the case definition. We estimated that, in 2015, 6.8 million episodes (uncertainty range [UR], 5.8-8.0 episodes) of clinical pneumonia resulted in hospital admissions of older adults worldwide. The hospital admission rate increased with advancing age and was higher in men. The total disease burden was likely underestimated when using the definition of radiologically confirmed pneumonia. Based on data from 52 hospital studies reporting data on pneumonia mortality, we estimated that about 1.1 million in-hospital deaths (UR, 0.9-1.4 in-hospital deaths) occurred among older adults. The burden of pneumonia requiring hospitalization among older adults is substantial. Appropriate prevention and management strategies should be developed to reduce its impact

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Domains of importance to the quality of life of older people from two Swiss regions

    Get PDF
    BACKGROUND: quality of life (QoL) is a subjective perception whose components may vary in importance between individuals. Little is known about which domains of QoL older people deem most important. OBJECTIVE: this study investigated in community-dwelling older people the relationships between the importance given to domains defining their QoL and socioeconomic, demographic and health status. METHODS: data were compiled from older people enrolled in the Lc65+ cohort study and two additional, population-based, stratified random samples (n = 5,300). Principal components analysis (PCA) was used to determine the underlying domains among 28 items that participants defined as important to their QoL. The components extracted were used as dependent variables in multiple linear regression models to explore their associations with socioeconomic, demographic and health status. RESULTS: PCA identified seven domains that older persons considered important to their QoL. In order of importance (highest to lowest): feeling of safety, health and mobility, autonomy, close entourage, material resources, esteem and recognition, and social and cultural life. A total of six and five domains of importance were significantly associated with education and depressive symptoms, respectively. The importance of material resources was significantly associated with a good financial situation (β = 0.16, P = 0.011), as was close entourage with living with others (β = 0.20, P = 0.007) and as was health and mobility with age (β = -0.16, P = 0.014). CONCLUSION: the importance older people give to domains of their QoL appears strongly related to their actual resources and experienced losses. These findings may help clinicians, researchers and policy makers better adapt strategies to individuals' needs
    corecore