7 research outputs found

    Disorder Promotes Ferromagnetism: Rounding of the Quantum Phase Transition in Sr₁₋ₓCaₓRuO₃

    Get PDF
    The subtle interplay of randomness and quantum fluctuations at low temperatures gives rise to a plethora of unconventional phenomena in systems ranging from quantum magnets and correlated electron materials to ultracold atomic gases. Particularly strong disorder effects have been predicted to occur at zero-temperature quantum phase transitions. Here, we demonstrate that the composition-driven ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCaxRuO3 is completely destroyed by the disorder introduced via the different ionic radii of the randomly distributed Sr and Ca ions. Using a magneto-optical technique, we map the magnetic phase diagram in the composition-temperature space. We find that the ferromagnetic phase is significantly extended by the disorder and develops a pronounced tail over a broad range of the composition x. These findings are explained by a microscopic model of smeared quantum phase transitions in itinerant magnets. Moreover, our theoretical study implies that correlated disorder is even more powerful in promoting ferromagnetism than random disorder

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Predictive Model for the Electrical Transport within Nanowire Networks

    No full text
    Thin networks of high aspect ratio conductive nanowires can combine high electrical conductivity with excellent optical transparency, which has led to a widespread use of nanowires in transparent electrodes, transistors, sensors, and flexible and stretchable conductors. Although the material and application aspects of conductive nanowire films have been thoroughly explored, there is still no model which can relate fundamental physical quantities, like wire resistance, contact resistance, and nanowire density, to the sheet resistance of the film. Here, we derive an analytical model for the electrical conduction within nanowire networks based on an analysis of the parallel resistor network. The model captures the transport characteristics and fits a wide range of experimental data, allowing for the determination of physical parameters and performance-limiting factors, in sharp contrast to the commonly employed percolation theory. The model thus constitutes a useful tool with predictive power for the evaluation and optimization of nanowire networks in various applications.Funding Agencies|ETH Zurich; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO Mat LiU) [2009 00971]; Swedish Foundation for Strategic Research</p

    Complementing Clinical Gait Assessments of Spinal Cord Injured Individuals using Wearable Movement Sensors

    Full text link
    Today's standard clinical practice to assess the walking ability of patients with neurological disorders during rehabilitation is based on simple gait tests such as the six-minute walking test (6MWT). Since the outcome of these tests is the average walking speed only, the aim of this work was to show that the application of movement sensors during a standardized walking test for the population of spinal cord injured (SCI) patients provides additional information on gait quality not directly described by the average speed. Hence, gait features that are related to quantitative and qualitative aspects of gait were extracted from the ankle sensor recordings of 29 SCI subjects and 19 healthy controls performing the 6MWT. The subjects were clustered into groups based on these gait features, and six gait features were selected to demonstrate the key differences between the clusters. The correlation of these features to the outcome of the 6MWT is discussed with their implications on gait quality

    Predicting upper limb compensation during prehension tasks in tetraplegic spinal cord injured patients using a single wearable sensor

    Full text link
    Upper limb (UL) compensation is a common strategy of patients with a high spinal cord injury (SCI), i.e., tetraplegic patients, to perform activities of daily living (ADLs) despite their sensorimotor deficits. Currently, an objective and sensitive tool to assess UL compensation, which is applicable in the clinical routine and in the daily life of patients, is missing. In this work, we propose a metric to quantify this compensation using a single inertial measurement unit (IMU). The spread of forearm pitch angles of an IMU attached to the wrist of 17 SCI patients and 18 healthy controls performing six prehension tasks of the graded redefined assessment of strength, sensibility and prehension (GRASSP) was extracted. Using the spread of the forearm pitch angles, a classification of UL compensation was possible with very good to excellent accuracies in all six different prehension tasks. Furthermore, the spread of forearm pitch angles correlated moderately to very strongly with qualitative and quantitative GRASSP prehension scores and the task duration. Therefore, we conclude that our proposed method has a high potential to classify compensation accurately and objectively and might be used to quantify the degree of UL compensation in ADLs. Thus, this method could be implemented in clinical trials investigating the effectiveness of interventions targeting UL functions
    corecore