378 research outputs found

    Diagnostic and prognostic role of TFF3, Romo-1, NF-кB and SFRP4 as biomarkers for endometrial and ovarian cancers: a prospective observational translational study

    Get PDF
    Purpose: This study aimed to evaluate trefoil factor 3 (TFF3), secreted frizzled-related protein 4 (sFRP4), reactive oxygen species modulator 1 (Romo1) and nuclear factor kappa B (NF-κB) as diagnostic and prognostic markers of endometrial cancer (EC) and ovarian cancer (OC). Methods: Thirty-one patients with EC and 30 patients with OC undergone surgical treatment were enrolled together with 30 healthy controls in a prospective study. Commercial ELISA kits determined serum TFF-3, Romo-1, NF-кB and sFRP-4 concentrations. Results: Serum TFF-3, Romo-1 and NF-кB levels were significantly higher in patients with EC and OC than those without cancer. Regarding EC, none of the serum biomarkers differs significantly between endometrial and non-endometrioid endometrial carcinomas. Mean serum TFF-3 and NF-кB levels were significantly higher in advanced stages. Increased serum levels of TFF-3 and NF-кB were found in those with a higher grade of the disease. Regarding OC, none of the serum biomarkers differed significantly among histological subtypes. Significantly increased serum levels of NF-кB were observed in patients with advanced-stage OC than those with stage I and II diseases. No difference in serum biomarker levels was found between those who had a recurrence and those who had not. The sensibility and specificity of these four biomarkers in discriminating EC and OC from the control group showed encouraging values, although no one reached 70%. Conclusions: TFF-3, Romo-1, NF-кB and SFRP4 could represent new diagnostic and prognostic markers for OC and EC. Further studies are needed to validate our results

    Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An association between adolescent idiopathic scoliosis and osteopenia has been proposed to exist. It is still not clear whether there is such an association and if so, whether osteopenia is a causative factor or a consequence. Our previous pilot studies have suggested the presence of osteopenia in scoliotic animals. The aim of this study was to investigate the development of scoliosis in an unpinealectomized bipedal osteopenic rat model, implementing osteoporosis as a causative factor.</p> <p>Methods</p> <p>Fifty Sprague-Dawley rats were rendered bipedal at the 3<sup>rd </sup>postnatal week and separated into control (25 rats) and heparin (25 rats receiving 1 IU/gr body weight/day) groups. DEXA scans after 4 weeks of heparin administration showed low bone mass in the heparin group. Anteroposterior and lateral x-rays of the surviving 42 animals (19 in heparin and 23 in control groups) were taken under anesthesia at the 40<sup>th </sup>week to evaluate for spinal deformity. Additional histomorphometric analysis was done on spine specimens to confirm the low bone mass in heparin receiving animals. Results of the DEXA scans, histomorphometric analysis and radiological data were compared between the groups.</p> <p>Results</p> <p>Bone mineral densities of rats in the heparin group were significantly lower than the control group as evidenced by both the DEXA scans and histomorphometric analyses. However, the incidence of scoliosis (82% in heparin and 65% in control; p > 0.05) as well as the curve magnitudes (12.1 ± 3.8 in heparin versus 10.1 ± 4.3 degrees in control; p > 0.05) were not significantly different. Osteopenic rats were significantly less kyphotic compared to control specimens (p = 0.001).</p> <p>Conclusions</p> <p>This study has revealed two important findings. One is that bipedality (in the absence of pinealectomy) by itself may be a cause of scoliosis in this animal model. Further studies on animal models need to consider bipedality as an independent factor. Secondly, relative hypokyphosis in osteopenic animals may have important implications. The absence of sagittal plane analyses in previous studies makes comparison impossible, but nonetheless these findings suggest that osteopenia may be important in the development of 3D deformity in adolescent idiopathic scoliosis.</p

    Association of left ventricular flow energetics with remodeling after myocardial infarction: New hemodynamic insights for left ventricular remodeling

    Get PDF
    Background: Myocardial infarction leads to complex changes in left ventricular (LV) hemodynamics. It remains unknown how four-dimensional acute changes in LV-cavity blood flow kinetic energy affects LV-remodeling. Methods and results: In total, 69 revascularised ST-segment elevation myocardial infarction (STEMI) patients were enrolled. All patients underwent cardiovascular magnetic resonance (CMR) examination within 2 days of the index event and at 3-month. CMR examination included cine, late gadolinium enhancement, and whole-heart four-dimensional flow acquisitions. LV volume-function, infarct size (indexed to body surface area), microvascular obstruction, mitral inflow, and blood flow KEi (kinetic energy indexed to end-diastolic volume) characteristics were obtained. Adverse LV-remodeling was defined and categorized according to increase in LV end-diastolic volume of at least 10%, 15%, and 20%. Twenty-four patients (35%) developed at least 10%, 17 patients (25%) at least 15%, 11 patients (16%) at least 20% LV-remodeling. Demographics and clinical history were comparable between patients with/without LV-remodeling. In univariable regression-analysis, A-wave KEi was associated with at least 10%, 15%, and 20% LV-remodeling (p = 0.03, p = 0.02, p = 0.02, respectively), whereas infarct size only with at least 10% LV-remodeling (p = 0.02). In multivariable regression-analysis, A-wave KEi was identified as an independent marker for at least 10%, 15%, and 20% LV-remodeling (p = 0.09, p < 0.01, p < 0.01, respectively), yet infarct size only for at least 10% LV-remodeling (p = 0.03). Conclusion: In patients with STEMI, LV hemodynamic assessment by LV blood flow kinetic energetics demonstrates a significant inverse association with adverse LV-remodeling. Late-diastolic LV blood flow kinetic energetics early after acute MI was independently associated with adverse LV-remodeling

    A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA–MONO/GOG-3020/ENGOT-ov45)

    Get PDF
    PURPOSE: ATHENA (ClinicalTrials.gov identifier: NCT03522246) was designed to evaluate rucaparib first-line maintenance treatment in a broad patient population, including those without BRCA1 or BRCA2 (BRCA) mutations or other evidence of homologous recombination deficiency (HRD), or high-risk clinical characteristics such as residual disease. We report the results from the ATHENA–MONO comparison of rucaparib versus placebo. METHODS: Patients with stage III-IV high-grade ovarian cancer undergoing surgical cytoreduction (R0/complete resection permitted) and responding to first-line platinum-doublet chemotherapy were randomly assigned 4:1 to oral rucaparib 600 mg twice a day or placebo. Stratification factors were HRD test status, residual disease after chemotherapy, and timing of surgery. The primary end point of investigator-assessed progression-free survival was assessed in a step-down procedure, first in the HRD population (BRCA-mutant or BRCA wild-type/loss of heterozygosity high tumor), and then in the intent-to-treat population. RESULTS: As of March 23, 2022 (data cutoff), 427 and 111 patients were randomly assigned to rucaparib or placebo, respectively (HRD population: 185 v 49). Median progression-free survival (95% CI) was 28.7 months (23.0 to not reached) with rucaparib versus 11.3 months (9.1 to 22.1) with placebo in the HRD population (log-rank P = .0004; hazard ratio [HR], 0.47; 95% CI, 0.31 to 0.72); 20.2 months (15.2 to 24.7) versus 9.2 months (8.3 to 12.2) in the intent-to-treat population (log-rank P < .0001; HR, 0.52; 95% CI, 0.40 to 0.68); and 12.1 months (11.1 to 17.7) versus 9.1 months (4.0 to 12.2) in the HRD-negative population (HR, 0.65; 95% CI, 0.45 to 0.95). The most common grade ≥ 3 treatment-emergent adverse events were anemia (rucaparib, 28.7% v placebo, 0%) and neutropenia (14.6% v 0.9%). CONCLUSION: Rucaparib monotherapy is effective as first-line maintenance, conferring significant benefit versus placebo in patients with advanced ovarian cancer with and without HRD

    European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer

    Get PDF
    Background: Homologous recombination repair (HRR) enables fault-free repair of double-stranded DNA breaks. HRR deficiency is predicted to occur in around half of high-grade serous ovarian carcinomas. Ovarian cancers harbouring HRR deficiency typically exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi). Current guidelines recommend a range of approaches for genetic testing to identify predictors of sensitivity to PARPi in ovarian cancer and to identify genetic predisposition. Design: To establish a European-wide consensus for genetic testing (including the genetic care pathway), decision making and clinical management of patients with recently diagnosed advanced ovarian cancer, and the validity of biomarkers to predict the effectiveness of PARPi in the first-line setting. The collaborative European experts’ consensus group consisted of a steering committee (n = 14) and contributors (n = 84). A (modified) Delphi process was used to establish consensus statements based on a systematic literature search, conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Results: A consensus was reached on 34 statements amongst 98 caregivers (including oncologists, pathologists, clinical geneticists, genetic researchers, and patient advocates). The statements concentrated on (i) the value of testing for BRCA1/2 mutations and HRR deficiency testing, including when and whom to test; (ii) the importance of developing new and better HRR deficiency tests; (iii) the importance of germline non-BRCA HRR and mismatch repair gene mutations for predicting familial risk, but not for predicting sensitivity to PARPi, in the first-line setting; (iv) who should be able to inform patients about genetic testing, and what training and education should these caregivers receive. Conclusion: These consensus recommendations, from a multidisciplinary panel of experts from across Europe, provide clear guidance on the use of BRCA and HRR deficiency testing for recently diagnosed patients with advanced ovarian cancer

    The Interaction between Regulatory T Cells and NKT Cells in the Liver: A CD1d Bridge Links Innate and Adaptive Immunity

    Get PDF
    Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells.The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis.CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury.NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity

    Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias

    Get PDF
    Paroxysmal kinesigenic dyskinesias is a paroxysmal movement disorder characterized by recurrent, brief attacks of abnormal involuntary movements induced by sudden voluntary movements. Although several loci, including the pericentromeric region of chromosome 16, have been linked to paroxysmal kinesigenic dyskinesias, the causative gene has not yet been identified. Here, we identified proline-rich transmembrane protein 2 (PRRT2) as a causative gene of paroxysmal kinesigenic dyskinesias by using a combination of exome sequencing and linkage analysis. Genetic linkage mapping with 11 markers that encompassed the pericentromeric of chromosome 16 was performed in 27 members of two families with autosomal dominant paroxysmal kinesigenic dyskinesias. Then, the whole-exome sequencing was performed in three patients from these two families. By combining the defined linkage region (16p12.1–q12.1) and the results of exome sequencing, we identified an insertion mutation c.649_650InsC (p.P217fsX7) in one family and a nonsense mutation c.487C>T (p.Q163X) in another family. To confirm our findings, we sequenced the exons and flanking introns of PRRT2 in another three families with paroxysmal kinesigenic dyskinesias. The c.649_650InsC (p.P217fsX7) mutation was identified in two of these families, whereas a missense mutation, c.796C>T (R266W), was identified in another family with paroxysmal kinesigenic dyskinesias. All of these mutations completely co-segregated with the phenotype in each family. None of these mutations was identified in 500 normal unaffected individuals of matched geographical ancestry. Thus, we have identified PRRT2 as the first causative gene of paroxysmal kinesigenic dyskinesias, warranting further investigations to understand the pathogenesis of this disorder
    corecore