11 research outputs found

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)

    Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal.

    Get PDF
    CAPRISA, 2015.Abstract available in pdf

    Impaired bone development and increased mesenchymal progenitor cells in calvaria of RB1−/− mice

    No full text
    We have previously shown that the retinoblastoma protein (pRb) can activate expression of Runx2-dependent, bone-specific genes in cultured cells. We now show that pRb also plays a role early in osteogenesis, and that in primary RB1−/− calvarial cells there is an increased osteoprogenitor pool. To understand pRb's function in vivo, we generated a conditional RB1-KO mouse in which pRb expression is efficiently extinguished in osteoblasts. These animals display an apparent developmental defect in bones, most strikingly in the calvaria. Cultured RB1−/− calvarial osteoblasts fail to cease proliferation upon reaching confluence or following differentiation. Re-plating assays of primary RB1−/− calvarial cells after differentiation showed a clear adipogenic ability with increased multipotency. RB1−/− osteoblasts display a severe reduction in levels of mRNAs expressed late in differentiation. In this study, we present strong evidence that pRb has multiple regulatory roles in osteogenesis. Furthermore, in the absence of RB1−/− there is a larger pool of multipotent cells compared with the WT counterpart. This increased pool of osteoprogenitor cells may be susceptible to additional transforming events leading to osteosarcoma, and is therefore key to understanding RB1 as a target in malignancy

    Psychopharmakotherapie

    No full text
    corecore