14 research outputs found

    New insights into potocki-shaffer syndrome: Report of two novel cases and literature review

    Get PDF
    Potocki-Shaffer syndrome (PSS) is a rare non-recurrent contiguous gene deletion syndrome involving chromosome 11p11.2. Current literature implies a minimal region with haploinsufficiency of three genes, ALX4 (parietal foramina), EXT2 (multiple exostoses), and PHF21A (craniofacial anomalies, and intellectual disability). The rest of the PSS phenotype is still not associated with a specific gene. We report a systematic review of the literature and included two novel cases. Because deletions are highly variable in size, we defined three groups of patients considering the PSS-genes involved. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three with PHF21A only. Among the latter, we describe a novel male child showing developmental delay, café-au-lait spots, liner postnatal overgrowth and West-like epileptic encephalopathy. We suggest PSS cases may have epileptic spasms early in life, and PHF21A is likely to be the causative gene. Given their subtle presentation these may be overlooked and if left untreated could lead to a severe type or deterioration in the developmental plateau. If our hypothesis is correct, a timely therapy may ameliorate PSS phenotype and improve patients’ outcomes. Our analysis also shows PHF21A is a candidate for the overgrowth phenotype

    Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype

    Get PDF
    PURPOSE: Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. METHODS: We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. RESULTS: The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. CONCLUSION: NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Epileptic encephalopathy due to BRAT1 pathogenic variants: report of eight new patients

    No full text
    51st Conference of the European-Society-of-Human-Genetics (ESHG) in conjunction with the European Meeting on Psychosocial Aspects of Genetics (EMPAG), Milan, ITALY, JUN 16-19, 2018International audienc

    <i>BRAT1</i>-related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients

    No full text
    International audienc

    Inborn errors of type I IFN immunity in patients with life-threatening COVID-19

    Get PDF
    Afegiu 653 1_Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection
    corecore