9 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model

    No full text
    The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo-referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental conditions. In parallel, the growing number of continuous eddy-covariance observations of energy and CO₂ fluxes has enabled modellers to optimize TBMs with these data. Past attempts to optimize TBM parameters mostly focused on model performance, overlooking the ecological properties of ecosystems. The aim of this study was to assess the ecological consistency of optimized trait-related parameters while improving the model performances for gross primary productivity (GPP) at site

    Influence of socioeconomic status on functional recovery after ARDS caused by SARS-CoV-2: a multicentre, observational study

    No full text
    International audienceIntroduction Prognosis of patients with COVID-19 depends on the severity of the pulmonary affection. The most severe cases may progress to acute respiratory distress syndrome (ARDS), which is associated with a risk of long-term repercussions on respiratory function and neuromuscular outcomes. The functional repercussions of severe forms of COVID-19 may have a major impact on quality of life, and impair the ability to return to work or exercise. Social inequalities in healthcare may influence prognosis, with socially vulnerable individuals more likely to develop severe forms of disease. We describe here the protocol for a prospective, multicentre study that aims to investigate the influence of social vulnerability on functional recovery in patients who were hospitalised in intensive care for ARDS caused by COVID-19. This study will also include an embedded qualitative study that aims to describe facilitators and barriers to compliance with rehabilitation, describe patients’ health practices and identify social representations of health, disease and care. Methods and analysis The "Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status" (RECOVIDS) study is a mixed-methods, observational, multicentre cohort study performed during the routine follow-up of post-intensive care unit (ICU) functional recovery after ARDS. All patients admitted to a participating ICU for PCR-proven SARS-CoV-2 infection and who underwent chest CT scan at the initial phase AND who received respiratory support (mechanical or not) or high-flow nasal oxygen, AND had ARDS diagnosed by the Berlin criteria will be eligible. The primary outcome is the presence of lung sequelae at 6 months after ICU discharge, defined either by alterations on pulmonary function tests, oxygen desaturation during a standardised 6 min walk test or fibrosis-like pulmonary findings on chest CT. Patients will be considered to be socially disadvantaged if they have an "Evaluation de la Précarité et des Inégalités de santé dans les Centres d’Examen de Santé" (EPICES) score ≥30.17 at inclusion. Ethics and dissemination The study protocol and the informed consent form were approved by an independent ethics committee (Comité de Protection des Personnes Sud Méditerranée II) on 10 July 2020 (2020-A02014-35). All patients will provide informed consent before participation. Findings will be published in peer-reviewed journals and presented at national and international congresses

    Correction: Influence of socio-economic status on functional recovery after ARDS caused by SARS-CoV-2: the multicentre, observational RECOVIDS study

    No full text
    International audienc

    Influence of socio-economic status on functional recovery after ARDS caused by SARS-CoV-2: the multicentre, observational RECOVIDS study

    No full text
    International audiencePurpose: Survivors after acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) are at high risk of developing respiratory sequelae and functional impairment. The healthcare crisis caused by the pandemic hit socially disadvantaged populations. We aimed to evaluate the influence of socio-economic status on respiratory sequelae after COVID-19 ARDS.Methods: We carried out a prospective multicenter study in 30 French intensive care units (ICUs), where ARDS survivors were pre-enrolled if they fulfilled the Berlin ARDS criteria. For patients receiving high flow oxygen therapy, a flow ≥ 50 l/min and an FiO2 ≥ 50% were required for enrollment. Socio-economic deprivation was defined by an EPICES (Evaluation de la Précarité et des Inégalités de santé dans les Centres d'Examens de Santé - Evaluation of Deprivation and Inequalities in Health Examination Centres) score ≥ 30.17 and patients were included if they performed the 6-month evaluation. The primary outcome was respiratory sequelae 6 months after ICU discharge, defined by at least one of the following criteria: forced vital capacity < 80% of theoretical value, diffusing capacity of the lung for carbon monoxide < 80% of theoretical value, oxygen desaturation during a 6-min walk test and fibrotic-like findings on chest computed tomography.Results: Among 401 analyzable patients, 160 (40%) were socio-economically deprived and 241 (60%) non-deprived; 319 (80%) patients had respiratory sequelae 6 months after ICU discharge (81% vs 78%, deprived vs non-deprived, respectively). No significant effect of socio-economic status was identified on lung sequelae (odds ratio (OR), 1.19 [95% confidence interval (CI), 0.72-1.97]), even after adjustment for age, sex, most invasive respiratory support, obesity, most severe P/F ratio (adjusted OR, 1.02 [95% CI 0.57-1.83]).Conclusions: In COVID-19 ARDS survivors, socio-economic status had no significant influence on respiratory sequelae 6 months after ICU discharge

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18

    TRY plant trait database, enhanced coverage and open access

    No full text
    Plant traits-the morphological, ahawnatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore