42 research outputs found

    NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes

    Get PDF
    BackgroundFully integrated PET/MR systems are being used frequently in clinical research and routine. National Electrical Manufacturers Association (NEMA) characterization of these systems is generally done with F-18 which is clinically the most relevant PET isotope. However, other PET isotopes, such as Ga-68 and Y-90, are gaining clinical importance as they are of specific interest for oncological applications and for follow-up of Y-90-based radionuclide therapy. These isotopes have a complex decay scheme with a variety of prompt gammas in coincidence. Ga-68 and Y-90 have higher positron energy and, because of the larger positron range, there may be interference with the magnetic field of the MR compared to F-18. Therefore, it is relevant to determine the performance of PET/MR for these clinically relevant and commercially available isotopes.MethodsNEMA NU 2-2007 performance measurements were performed for characterizing the spatial resolution, sensitivity, image quality, and the accuracy of attenuation and scatter corrections for F-18, Ga-68, and Y-90. Scatter fraction and noise equivalent count rate (NECR) tests were performed using F-18 and Ga-68. All phantom data were acquired on the GE Signa integrated PET/MR system, installed in UZ Leuven, Belgium.Results(18)F, Ga-68, and Y-90 NEMA performance tests resulted in substantially different system characteristics. In comparison with F-18, the spatial resolution is about 1mm larger in the axial direction for Ga-68 and no significative effect was found for Y-90. The impact of this lower resolution is also visible in the recovery coefficients of the smallest spheres of Ga-68 in image quality measurements, where clearly lower values are obtained. For Y-90, the low number of counts leads to a large variability in the image quality measurements. The primary factor for the sensitivity change is the scale factor related to the positron emission fraction. There is also an impact on the peak NECR, which is lower for Ga-68 than for F-18 and appears at higher activities.ConclusionsThe system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for Ga-68 and Y-90 compared to F-18. But these differences are compensated by the PET/MR scanner technologies and reconstructions methods

    Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging

    Get PDF
    Object: The aim of this study was to determine the impact to PET quantification, image quality and possible diagnostic impact of an anterior surface array used in a combined PET/MR imaging system. Materials and methods: An extended oval phantom and 15 whole-body FDG PET/CT subjects were re-imaged for one bed position following placement of an anterior array coil at a clinically realistic position. The CT scan, used for PET attenuation correction, did not include the coil. Comparison, including liver SUVmean, was performed between the coil present and absent images using two methods of PET reconstruction. Due to the time delay between PET scans, a model was used to account for average physiologic time change of SUV. Results: On phantom data, neglecting the coil caused a mean bias of −8.2% for non-TOF/PSF reconstruction, and −7.3% with TOF/PSF. On clinical data, the liver SUV neglecting the coil presence fell by −6.1% (±6.5%) for non-TOF/PSF reconstruction; respectively −5.2% (±5.3%) with TOF/PSF. All FDG-avid features seen with TOF/PSF were also seen with non-TOF/PSF reconstruction. Conclusion: Neglecting coil attenuation for this anterior array coil results in a small but significant reduction in liver SUVmean but was not found to change the clinical interpretation of the PET images

    Detection of a glitch in the pulsar J1709-4429

    Get PDF
    We report the detection of a glitch event in the pulsar J1709−-4429 (also known as B1706−-44) during regular monitoring observations with the Molonglo Observatory Synthesis Telescope (UTMOST). The glitch was found during timing operations, in which we regularly observe over 400 pulsars with up to daily cadence, while commensally searching for Rotating Radio Transients, pulsars, and FRBs. With a fractional size of Δν/ν≈52.4×10−9\Delta\nu/\nu \approx 52.4 \times10^{-9}, the glitch reported here is by far the smallest known for this pulsar, attesting to the efficacy of glitch searches with high cadence using UTMOST.Comment: 3 pages, 1 figur

    Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand

    Get PDF
    Dengue viruses are a major cause of illness and hospitalizations in tropical and subtropical regions of the world. Severe dengue illness can cause prolonged hospitalization and in some cases death in both children and adults. The majority of dengue infections however are inapparent, producing little clinical illness. Little is known about the epidemiology or factors that determine the incidence of inapparent infection. We describe in a study of school children in Northern Thailand the changing nature of symptomatic and inapparent dengue infection. We demonstrate that the proportion of inapparent dengue infection varies widely among schools during a year and within schools during subsequent years. Important factors that determine this variation are the amount of dengue infection in a given and previous year. Our findings provide an important insight in the virus-host interaction that determines dengue severity, how severe a dengue epidemic may be in a given year, and important clues on how a dengue vaccine may be effective

    The NANOGrav Nine-year Data Set:Astrometric Measurements of 37 Millisecond Pulsars

    Get PDF
    Using the nine-year radio-pulsar timing data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), collected at Arecibo Observatory and the Green Bank Telescope, we have measured the positions, proper motions, and parallaxes for 37 millisecond pulsars. We report twelve significant parallax measurements and distance measurements, and eighteen lower limits on distance. We compare these measurements to distances predicted by the NE2001 interstellar electron density model and find them to be in general agreement. We use measured orbital-decay rates and spin-down rates to confirm two of the parallax distances and to place distance upper limits on other sources; these distance limits agree with the parallax distances with one exception, PSR. J1024-0719, which we discuss at length. Using the proper motions of the 37 NANOGrav pulsars in combination with other published measurements, we calculate the velocity dispersion of the millisecond pulsar population in Galactocentric coordinates. We find the radial, azimuthal, and perpendicular dispersions to be 46, 40, and 24 km s(-1), respectively, in a model that allows for high-velocity outliers; or 81, 58, and 62 km s(-1) for the full population. These velocity dispersions are far smaller than those of the canonical pulsar population, and are similar to older Galactic disk populations. This suggests that millisecond pulsar velocities are largely attributable to their being an old population rather than being artifacts of their birth and evolution as neutron star binary systems. The components of these velocity dispersions follow similar proportions to other Galactic populations, suggesting that our results are not biased by selection effects

    The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Get PDF
    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background
    corecore