80 research outputs found

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias

    No full text
    microRNAs are involved in a wide variety of normal and pathological cellular processes, including tumorigenic transformation. Despite significant progress made towards understanding their mechanisms of action, much less is known about the regulation of expression of specific microRNAs. Recent reports have established a link between hypoxia, a key feature of the tumor microenvironment, and a group of microRNAs. Select members of this group seem to affect apoptotic signaling in a hypoxic environment and are also predicted to target genes of critical importance for tumor biology. Interestingly, most hypoxia-induced microRNAs are also overexpressed in human cancers, suggesting a role in tumorigenesis. We hereby discuss the known and predicted regulators of microRNA expression and approaches for expanding this fledgling research area

    Study of the 12^{12}C + 16^{16}O fusion via the Trojan Horse Method

    No full text
    International audienceThe 12C + 16O fusion reaction plays a role in the later stages of carbon burning, influencing the evolution of both massive stars and Type Ia Supernovae: when most of the carbon is depleted, by the main fusion reaction 12C + 12C, the abundance of 16O nuclei is significantly higher. Therefore 12C + 16O can indeed have a strong impact on the process. In this brief contribution, preliminary data analysis results of a new indirect measurement of the 12C + 16O, performed at astrophysical energies via the Trojan Horse Method, will be presented and discussed

    The 12^{12}C + 16^{16}O fusion reaction in carbon burning: Study at energies of astrophysical interest using the Trojan Horse Method

    No full text
    International audienceThe carbon-burning process in massive stars mainly occurs via the 12C +12 C. However, at temperatures higher than 109K and considering the increased abundance of 16O produced during the later stages of the heliumburning,the 12C+16O fusion can also become relevant. Moreover, 12C+16O also plays a role in the scenario of explosive carbon burning. Thus, the astrophysical energy region of interest ranges from 3 to 7.2 MeV in the center-of-mass frame. However, the various measurements of the cross-section available in the literature stop around 4 MeV, making extrapolation necessary. To solve this uncertainty and corroborate direct measurement we applied the Trojan Horse Method to three-body processes 16O(14N, α24Mg)2H and 16O(14N, p27Al)2H to study the 12C(16O, α)24Mg and 12C(16O, p)27Al reactions in their entire energy region of astrophysical interest. In this contribution, after briefly describing the method used, the experiment and the preliminary phases of the data analysis will be presented and discussed

    Nuclear physics midterm plan at Legnaro National Laboratories (LNL)

    Get PDF
    International audienceThe next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report

    The Virgo O3 run and the impact of the environment

    No full text
    Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers

    The Virgo O3 run and the impact of the environment

    No full text
    International audienceSources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third Observing Run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers

    The Virgo O3 run and the impact of the environment

    No full text
    Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third Observing Run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers

    The Virgo O3 run and the impact of the environment

    No full text
    International audienceSources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third Observing Run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers
    corecore