351 research outputs found

    A New Process-Based Soil Methane Scheme:Evaluation Over Arctic Field Sites With the ISBA Land Surface Model

    Get PDF
    Permafrost soils and arctic wetlands methane emissions represent an important challenge for modeling the future climate. Here we present a process-based model designed to correctly represent the main thermal, hydrological, and biogeochemical processes related to these emissions for general land surface modeling. We propose a new multilayer soil carbon and gas module within the Interaction Soil-Biosphere-Atmosphere (ISBA) land-surface model (LSM). This module represents carbon pools, vertical carbon dynamics, and both oxic and anoxic organic matter decomposition. It also represents the soil gas processes for CH4, CO2, and O2 through the soil column. We base CH4 production and oxydation on an O2 control instead of the classical water table level strata approach used in state-of-the-art soil CH4 models. We propose a new parametrization of CH4 oxydation using recent field experiments and use an explicit O2 limitation for soil carbon decomposition. Soil gas transport is computed explicitly, using a revisited formulation of plant-mediated transport, a new representation of gas bulk diffusivity in porous media closer to experimental observations, and an innovative advection term for ebullition. We evaluate this advanced model on three climatically distinct sites : two in Greenland (Nuuk and Zackenberg) and one in Siberia (Chokurdakh). The model realistically reproduces methane and carbon dioxide emissions from both permafrosted and nonpermafrosted sites. The evolution and vertical characteristics of the underground processes leading to these fluxes are consistent with current knowledge. Results also show that physics is the main driver of methane fluxes, and the main source of variability appears to be the water table depth

    Eliminating Hepatitis C Virus From a Prevalent Kidney Transplant Recipient Population: A Single-Center Study in Belgium in the Direct-Acting Antivirals Era

    Get PDF
    Background: Direct-acting antivirals (DAAs) have revolutionized the treatment of hepatitis C virus (HCV) infection. Although previous studies have reported positive results with DAAs after kidney transplantation (KT), their impact on the prevalence of HCV viremia (HCVv) in prevalent kidney transplant recipients (KTRs) remains ill defined. Methods: We retrospectively reviewed the HCV status of all patients followed at Cliniques Universitaires Saint-Luc, Brussels, Belgium, outpatient KT clinic between January 2014 and December 2018. We collected the clinical features of KTRs treated with DAAs during this period and calculated the annual prevalence of HCVv over this period. Results: Out of 1451 KTRs, 22 (1.52%) had HCVv in 2014 to 2018. From 2014 to 2018, the annual prevalence of HCVv dropped from 1.97% to 0.43%, (P < .001). Fourteen KTRs were treated with DAAs a median of 197 months (range: 5-374) after KT, mostly (79%) in 2017 after reimbursement restrictions of DAAs for KTRs in Belgium were removed. DAA treatment was safe with a sustained virological response rate at 12 weeks after treatment (SVR12) of 93%. Two patients died 14 months (lymphoma, despite SVR12) and 7 months (hepatocarcinoma, no SVR12) after DAAs initiation, respectively. Among HCVv KTRs not treated with DAAs (n = 8), 2 lost their graft, 5 died, and 1 is initiating therapy. The current prevalence of HCVv in the cohort is 0.08%, with a single patient currently on treatment. Conclusion: Treatment with DAAs led to a dramatic decrease of HCVv prevalence in this KTR cohort. DAA use was safe and effective. Elimination of HCV is possible at KT clinics

    Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study

    Get PDF
    Seven climate models were used to explore the biogeophysical impacts of human-induced land cover change (LCC) at regional and global scales. The imposed LCC led to statistically significant decreases in the northern hemisphere summer latent heat flux in three models, and increases in three models. Five models simulated statistically significant cooling in summer in near-surface temperature over regions of LCC and one simulated warming. There were few significant changes in precipitation. Our results show no common remote impacts of LCC. The lack of consistency among the seven models was due to: 1) the implementation of LCC despite agreed maps of agricultural land, 2) the representation of crop phenology, 3) the parameterisation of albedo, and 4) the representation of evapotranspiration for different land cover types. This study highlights a dilemma: LCC is regionally significant, but it is not feasible to impose a common LCC across multiple models for the next IPCC assessment

    Process-oriented analysis of dominant sources of uncertainty in the land carbon sink

    Get PDF
    The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2_{2} and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil, where models do not even agree on the direction of change in carbon stocks over the past 60 years. This uncertainty is driven by plant productivity, allocation, and turnover response to atmospheric CO2_{2} (and to a smaller extent to LULCC), and the response of soil to LULCC (and to a lesser extent climate). Overall, differences in turnover explain ~70% of model spread in both vegetation and soil carbon changes. Further analysis of internal plant and soil (individual pools) cycling is needed to reduce uncertainty in the controlling processes behind the global land carbon sink

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage
    • …
    corecore