31 research outputs found

    The Oncogenic EWS-FLI1 Protein Binds In Vivo GGAA Microsatellite Sequences with Potential Transcriptional Activation Function

    Get PDF
    The fusion between EWS and ETS family members is a key oncogenic event in Ewing tumors and important EWS-FLI1 target genes have been identified. However, until now, the search for EWS-FLI1 targets has been limited to promoter regions and no genome-wide comprehensive analysis of in vivo EWS-FLI1 binding sites has been undertaken. Using a ChIP-Seq approach to investigate EWS-FLI1-bound DNA sequences in two Ewing cell lines, we show that this chimeric transcription factor preferentially binds two types of sequences including consensus ETS motifs and microsatellite sequences. Most bound sites are found outside promoter regions. Microsatellites containing more than 9 GGAA repeats are very significantly enriched in EWS-FLI1 immunoprecipitates. Moreover, in reporter gene experiments, the transcription activation is highly dependent upon the number of repeats that are included in the construct. Importantly, in vivo EWS-FLI1-bound microsatellites are significantly associated with EWS-FLI1-driven gene activation. Put together, these results point out the likely contribution of microsatellite elements to long-distance transcription regulation and to oncogenesis

    Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas

    Get PDF
    Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future

    Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition

    Get PDF
    SummarySmoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant

    The transcriptional landscape of Shh medulloblastoma

    Get PDF
    © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.info:eu-repo/semantics/publishedVersio

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    Chemotherapy alone as initial treatment for primary CNS lymphoma in patients older than 60 years: A multicenter phase II study (26952) of the European Organization for Research and Treatment of Cancer Brain Tumor Group

    No full text
    Purpose: To assess the efficacy and toxicity of chemotherapy alone in patients older than 60 years with primary CNS lymphoma. Patients and Methods: Fifty patients with a median age of 72 years and a median Karnofsky performance score (KPS) of 50 were eligible for this multicenter phase II study. The protocol consisted of high-dose methotrexate (MTX), lomustine, procarbazine, methylprednisolone, and intrathecal chemotherapy with MTX and cytarabine. The patients received one induction cycle; if objective response was achieved, five additional maintenance cycles were administered every 6 weeks. The median follow-up of patients was 3 years. Results: Twenty four patients (48%) achieved an objective response (compete response [CR], 42%; partial response, 6%), with a median duration of CR of 27 months (range, 3 to 47+ months). Overall median survival time was 14.3 months, and 1-year progression-free survival was 40% (95% confidence interval [CI], 26% to 53%). Myelosuppression was the most frequent side effect, with grade 3 to 4 neutropenia in 19% of patients. One patient died during chemotherapy, as a result of pulmonary embolism. Most patients improved or preserved their cognitive functions (47% and 45% of the patients, respectively) and KPS (36% and 52% of the patients, respectively) until relapse, whereas cognitive and KPS decline attributed to delayed treatment neurotoxicity occurred in 8% and 12% patients, respectively. Conclusion: In the elderly, this chemotherapy regimen compares favorably with radiotherapy (RT) alone and reduces considerably the risk of delayed neurotoxicity associated with combined chemoradiotherapy. Chemotherapy alone is an appropriate strategy in older patients to delay or avoid RT. © 2003 by American Society of Clinical Oncology.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network.

    Get PDF
    BACKGROUND: A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. RESULTS: We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. CONCLUSIONS: The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific

    Identification of Tissue of Origin and Guided Therapeutic Applications in Cancers of Unknown Primary Using Deep Learning and RNA Sequencing (TransCUPtomics)

    No full text
    International audienceCancers of unknown primary (CUP) are metastatic cancers for which the primary tumor is not found despite thorough diagnostic investigations. Multiple molecular assays have been proposed to identify the tissue of origin (TOO) and inform clinical care; however, none has been able to combine accuracy, interpretability, and easy access for routine use. We developed a classifier tool based on the training of a variational autoencoder to predict tissue of origin based on RNA-sequencing data. We used as training data 20,918 samples corresponding to 94 different categories, including 39 cancer types and 55 normal tissues. The TransCUPtomics classifier was applied to a retrospective cohort of 37 CUP patients and 11 prospective patients. TransCUPtomics exhibited an overall accuracy of 96% on reference data for TOO prediction. The TOO could be identified in 38 (79%) of 48 CUP patients. Eight of 11 prospective CUP patients (73%) could receive first-line therapy guided by TransCUPtomics prediction, with responses observed in most patients. The variational autoencoder added further utility by enabling prediction interpretability, and diagnostic predictions could be matched to detection of gene fusions and expressed variants. TransCUPtomics confidently predicted TOO for CUP and enabled tailored treatments leading to significant clinical responses. The interpretability of our approach is a powerful addition to improve the management of CUP patients. Copyrigh

    Treatment algorithms based on tumor molecular profiling: The essence of precision medicine trials

    No full text
    International audienceWith the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials
    corecore