45 research outputs found

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    Premature Expression of Foxp3 in Double-Negative Thymocytes

    No full text
    <div><p>Peripheral immune regulation depends on the generation of thymic-derived regulatory T (tT<sub>reg</sub>) cells to maintain self-tolerance and to counterbalance overshooting immune responses. The expression of the T<sub>reg</sub> lineage defining transcription factor Foxp3 in developing tT<sub>reg</sub> cells depends on TCR signaling during the thymic selection process of these T cells. In this study, we surprisingly identify Foxp3<sup>+</sup> immature thymocytes at the double-negative (DN) stage in transcription factor 7 (Tcf7)-deficient mice. These Foxp3<sup>+</sup> cells did not express a TCR (β or γδ chains), CD3 or CD5 and therefore these cells were true DN cells. Further investigation of this phenomenon in a transgenic TCR model showed that Foxp3-expressing DN cells could not respond to TCR stimulation <i>in vivo</i>. These data suggest that Foxp3 expression in these DN cells occurred independently of TCR signaling. Interestingly, these Foxp3<sup>+</sup> DN cells were located in a transition state between DN1 and DN2 (CD4<sup>-</sup>CD8<sup>-</sup>CD3<sup>-</sup>TCR<sup>-</sup>CD44<sup>high</sup>CD25<sup>low</sup>). Our results indicate that Tcf7 is involved in preventing the premature expression of Foxp3 in DN thymocytes.</p></div

    Analysis of Foxp3<sup>+</sup> DN cells in TEa-Tcf7-deficient mice.

    No full text
    <p>(A) Representative plots showing TCRVβ6 and TCRVα2 expression on CD4SP thymocytes from TEa-Tcf7<sup>+/+</sup> and TEa-Tcf7<sup>-/-</sup> mice in the presence or absence of cognate antigen (Ag). The Tg TCR population is divided into TCR<sup>high</sup> and TCR<sup>low</sup> populations. (B-C) Quantification of the percentage of total (B) or TCR<sup>high</sup> (C) TCRVβ6<sup>+</sup>TCRVα2<sup>+</sup> cells among CD4SP thymocytes (n = 8). (D) Representative plots showing Foxp3 expression in DN TCRVβ6<sup>+</sup>TCRVα2<sup>+</sup> thymocytes from TEa-Tcf7<sup>+/+</sup> and TEa-Tcf7<sup>-/-</sup> mice in the absence of Ag. (E) Quantification of Foxp3<sup>+</sup> DN TCRVβ6<sup>+</sup>TCRVα2<sup>+</sup> thymocytes from TEa-Tcf7<sup>+/+</sup> and TEa-Tcf7<sup>-/-</sup> mice in the presence or absence of Ag (n = 8). (F-G) Representative plots showing TCRVβ6 and TCRVα2 expression on DN Foxp3<sup>+</sup> (F) or CD4SP Foxp3<sup>+</sup> (G) thymocytes from TEa-Tcf7<sup>+/+</sup> and TEa-Tcf7<sup>-/-</sup> mice in the presence or absence of Ag. Cells are pre-gated on TCRVβ6<sup>+</sup>TCRVα2<sup>+</sup>. Each dot represents one individual animal and mean is shown for all quantified data. Numbers show percentages of cells within the indicated box. NS, not significant, *** P < 0.001, **** P < 0.0001 (unpaired t-test).</p

    Foxp3 expression at the DN cell stage in Tcf7-deficient mice.

    No full text
    <p>(A) Representative plots and quantification of Foxp3 staining in CD4<sup>-</sup>CD8<sup>-</sup> (DN) thymocytes from Tcf7<sup>+/+</sup> and Tcf7<sup>-/-</sup> mice (n = 8). (B) Left panels: Representative plots showing Foxp3 and intracellular (IC) TCRβ staining in DN thymocytes from Tcf7<sup>+/+</sup> and Tcf7<sup>-/-</sup> mice. Middle panels: TCRγδ and CD3 staining on DN Foxp3<sup>+</sup>TCRβ<sup>-</sup> cells (gate R1). Right panel: Quantification of DN Foxp3<sup>+</sup>TCRβ<sup>-</sup>TCRγδ<sup>-</sup>CD3<sup>-</sup> cells (gate R2) depicted as the percentage of total DN cells (n = 6). (C) Left panel: Representative histograms showing CD5 staining on Foxp3<sup>+</sup> DN, Foxp3<sup>+</sup> DP, and Foxp3<sup>+</sup> CD4SP cells from Tcf7<sup>-/-</sup> mice. Right panel: Quantification of CD5 geometric mean from DN, DP, and CD4SP Foxp3<sup>+</sup> or Foxp3<sup>-</sup> populations (n = 3). Mean + SD are shown for all quantified data. Numbers show percentages of cells within the indicated box. Each symbol represents an individual animal. ** P < 0.01 (unpaired t-test).</p

    Brown adipose tissue harbors a distinct sub-population of regulatory T cells.

    No full text
    Regulatory T (Treg) cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT). Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature. As these Treg cells respond to BAT activation upon cold exposure, this study defines a BAT-specific Treg sub-set with direct implications for the regulation of energy homeostasis in response to environmental stress
    corecore