1,287 research outputs found

    Deep levels in silicon-oxygen superlattices

    No full text
    This work reports on the deep levels observed in Pt/Al2O3/p-type Si metal-oxide-semiconductor capacitors containing a silicon-oxygen superlattice (SL) by deep-level transient spectroscopy. It is shown that the presence of the SL gives rise to a broad band of hole traps occurring around the silicon mid gap, which is absent in reference samples with a silicon epitaxial layer. In addition, the density of states of the deep layers roughly scales with the number of SL periods for the as- deposited samples. Annealing in a forming gas atmosphere reduces the maximum concentration significantly, while the peak energy position shifts from close-to mid-gap towards the valence band edge. Based on the flat-band voltage shift of the Capacitance-Voltage characteristics it is inferred that positive charge is introduced by the oxygen atomic layers in the SL, indicating the donor nature of the underlying hole traps. In some cases, a minor peak associated with P-b dangling bond centers at the Si/SiO2 interface has been observed as well

    Study of electrically active defects in epitaxial layers on silicon

    Get PDF
    Electrically active defects in silicon-based epitaxial layers on silicon substrates have been studied by Deep-Level Transient Spectroscopy (DLTS). Several aspects have been investigated, like, the impact of the pre-epi cleaning conditions and the effect of a post-deposition anneal on the deep-level properties. It is shown that the pre-cleaning thermal budget has a strong influence on the defects at the substrate/epi layer interface. At the same time, a post-deposition Forming Gas Anneal can passivate to a large extent the active defect states. Finally, it is shown that application of a post-deposition anneal increases the out-diffusion of carbon from a Si:C stressor layer into the p-type CZ substrate

    Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors

    Get PDF
    New techniques that attempt to more fully exploit spectroscopic diagnostics in the divertor and pedestal region during highly dissipative scenarios are demonstrated using experimental results from recent low-Z seeding experiments on Alcator C-Mod, JET and ASDEX Upgrade. To exhaust power at high parallel heat flux, q ‖ > 1 GW/m 2 , while minimizing erosion, reactors with solid, high-Z plasma facing components (PFCs) are expected to use extrinsic impurity seeding. Due to transport and atomic physics processes which impact impurity ionization balance, so-called ‘non-coronal’ effects, we do not accurately know and have yet to demonstrate the maximum q ‖ which can be mitigated in a tokamak. Radiation enhancement for nitrogen is shown to arise primarily from changes in Li- and Be-like charge states on open field lines, but also through transport-driven enhancement of H- and He-like charge states in the pedestal region. Measurements are presented from nitrogen seeded H-mode and L-mode plasmas where emission from N 1+ through N 6+ are observed. Active charge exchange spectroscopy of partially ionized low-Z impuri- ties in the plasma edge is explored to measure N 5+ and N 6+ within the confined plasma, while passive UV and visible spectroscopy is used to measure N 1+ -N 4+ in the boundary. Examples from recent JET and Alcator C-Mod experiments which employ nitrogen seeding highlight how improving spectroscopic cov- erage can be used to gain empirical insight and provide more data to validate boundary simulations.EURATOM 63305

    Alternative splicing discriminates molecular subtypes and has prognostic impact in diffuse large B-cell lymphoma

    Get PDF
    Effect of alternative splicing (AS) on diffuse large B-cell lymphoma (DLBCL) pathogenesis and survival has not been systematically addressed. Here, we compared differentially expressed genes and exons in association with survival after chemoimmunotherapy, and between germinal center B-cell like (GCB) and activated B-cell like (ABC) DLBCLs. Genome-wide exon array-based screen was performed from samples of 38 clinically high-risk patients who were treated in a Nordic phase II study with dose-dense chemoimmunotherapy and central nervous system prophylaxis. The exon expression profile separated the patients according to molecular subgroups and survival better than the gene expression profile. Pathway analyses revealed enrichment of AS genes in inflammation and adhesion-related processes, and in signal transduction, such as phosphatidylinositol signaling system and adenosine triphosphate binding cassette transporters. Altogether, 49% of AS-related exons were protein coding, and domain prediction showed 28% of such exons to include a functional domain, such as transmembrane helix domain or phosphorylation sites. Validation in an independent cohort of 92 DLBCL samples subjected to RNA-sequencing confirmed differential exon usage of selected genes and association of AS with molecular subtypes and survival. The results indicate that AS events are able to discriminate GCB and ABC DLBCLs and have prognostic impact in DLBCL.Peer reviewe

    Energy barriers at interfaces between (100) InxGa1-xAs (0 <= x <= 0.53) and atomic-layer deposited Al2O3 and HfO2

    Get PDF
    The electron energy band alignment at interfaces of InxGa1-xAs (0 <= x <= 0.53) with atomic-layer deposited insulators Al2O3 and HfO2 is characterized using internal photoemission and photoconductivity experiments. The energy of the InxGa1-xAs valence band top is found to be only marginally influenced by the semiconductor composition. This result suggests that the known bandgap narrowing from 1.42 to 0.75 eV when the In content increases from 0 to 0.53 occurs mostly through downshift of the semiconductor conduction band bottom. It finds support from both electron and hole photoemission data. Similarly to the GaAs case, electron states originating from the interfacial oxidation of InxGa1-xAs lead to reduction in the electron barrier at the semiconductor/oxide interface. (C) 2009 American Institute of Physics. (DOI: 10.1063/1.3137187

    New Records and Potential Distribution of the ant Gracilidris pombero Wild & Cuezzo (Hymenoptera: Formicidae)

    Get PDF
    Gracilidris pombero Wild &amp; Cuezzo, 2006 is an ant that remains poorly studied. Endemic from South America, its geographical distribution is known from few and scattered collection points. In this study, we present new occurrence records of G. pombero obtained through extensive collections along the Cerrado biome and the Atlantic Forest of northeastern Brazil. Based on the new and existing occurrence records we produced a model of the geographic distribution of G. pombero. Modelling method was chosen based on maximization of model performance after evaluating a series of modelling approaches, including different parametrizations of the Maxent algorithm and distinct runs of the GARP algorithm. We found a total of 43 new records of G. pombero in Brazil, including the first records of this species in the states of Goiás, Mato Grosso do Sul, Piauí, Sergipe and Tocantins. Based on our model, the areas of highest suitability of occurrence of G. pombero are located in two main zones in South America: one ranging from midwestern Brazil to southeastern Bolivia and Paraguay; and the other spanning the South of Brazil and Uruguay

    Energy barriers at interfaces of (100)GaAs with atomic layer deposited Al2O3 and HfO2

    Get PDF
    Band alignment at the interfaces of (100)GaAs with Al2O3 and HfO2 grown using atomic layer deposition is determined using internal photoemission and photoconductivity measurements. Though the inferred conduction and valence band offsets for both insulators were found to be close to or larger than 2 eV, the interlayer grown by concomitant oxidation of GaAs reduces the barrier for electrons by approximately 1 eV. The latter may pose significant problems associated with electron injection from GaAs into the oxide. (C) 2008 American Institute of Physics. (DOI: 10.1063/1.3021374

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants
    • …
    corecore