14,764 research outputs found

    A Hamiltonian functional for the linearized Einstein vacuum field equations

    Full text link
    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained.Comment: 5 pages, accepted in J. Phys.: Conf. Serie

    Diffusive transport and self-consistent dynamics in coupled maps

    Full text link
    The study of diffusion in Hamiltonian systems has been a problem of interest for a number of years. In this paper we explore the influence of self-consistency on the diffusion properties of systems described by coupled symplectic maps. Self-consistency, i.e. the back-influence of the transported quantity on the velocity field of the driving flow, despite of its critical importance, is usually overlooked in the description of realistic systems, for example in plasma physics. We propose a class of self-consistent models consisting of an ensemble of maps globally coupled through a mean field. Depending on the kind of coupling, two different general types of self-consistent maps are considered: maps coupled to the field only through the phase, and fully coupled maps, i.e. through the phase and the amplitude of the external field. The analogies and differences of the diffusion properties of these two kinds of maps are discussed in detail.Comment: 13 pages, 14 figure

    Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow

    Full text link
    Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with L\'evy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma

    Clustering transition in a system of particles self-consistently driven by a shear flow

    Get PDF
    We introduce a simple model of active transport for an ensemble of particles driven by an external shear flow. Active refers to the fact that the flow of the particles is modified by the distribution of particles itself. The model consists in that the effective velocity of every particle is given by the average of the external flow velocities felt by the particles located at a distance less than a typical radius, RR. Numerical analysis reveals the existence of a transition to clustering depending on the parameters of the external flow and on RR. A continuum description in terms of the number density of particles is derived, and a linear stability analysis of the density equation is performed in order to characterize the transitions observed in the model of interacting particles.Comment: 11 pages, 2 figures. To appear in PR

    Debye Potentials for Maxwell and Dirac Fields from a Generalisation of the Killing-Yano Equation

    Get PDF
    By using conformal Killing-Yano tensors, and their generalisations, we obtain scalar potentials for both the source-free Maxwell and massless Dirac equations. For each of these equations we construct, from conformal Killing-Yano tensors, symmetry operators that map any solution to another.Comment: 35 pages, plain Te

    Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty

    Full text link
    We analyze the quantum dynamics of the non-relativistic two-dimensional isotropic harmonic oscillator in Heisenberg's picture. Such a system is taken as toy model to analyze some of the various quantum theories that can be built from the application of Dirac's quantization rule to the various symplectic structures recently reported for this classical system. It is pointed out that that these quantum theories are inequivalent in the sense that the mean values for the operators (observables) associated with the same physical classical observable do not agree with each other. The inequivalence does not arise from ambiguities in the ordering of operators but from the fact of having several symplectic structures defined with respect to the same set of coordinates. It is also shown that the uncertainty relations between the fundamental observables depend on the particular quantum theory chosen. It is important to emphasize that these (somehow paradoxical) results emerge from the combination of two paradigms: Dirac's quantization rule and the usual Copenhagen interpretation of quantum mechanics.Comment: 8 pages, LaTex file, no figures. Accepted for publication in Phys. Rev.

    Presence of New Delhi metallo-β-lactamase gene (NDM-1) in a clinical isolate of Acinetobacter junii in Argentina

    Get PDF
    Here we report the presence of a clinically significant A. junii blaNDM-1 positive in a 38-year-old woman who was admitted to the emergency department with a fever and leg ulcers with signs of infection. The NDM-1 carbapenemase has been dramatically spread among Gram-negative bacilli, thus imposing a new challenge on the health system to fight bacterial infections.These data expand the number of Acinetobacter species harbouring blaNDM-1. The wide existence of Acinetobacter harbouring and dispersing this carbapenemase emphasizes the importance of non-previously recognized pathogens as reservoirs of dangerous resistance determinants. These resistance determinants can be later easily transferred to other menacing pathogens.Fil: Montaña, Sabrina Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cittadini, Roxana. Sanatorio Mater Dei; ArgentinaFil: Del Castillo M,. Sanatorio Mater Dei; ArgentinaFil: Uong, S.. California State University; Estados UnidosFil: Lazzaro, T.. California State University; Estados UnidosFil: Almuzara, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Barberis, Claudia. Sanatorio Mater Dei; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Vay, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Ramírez, M. S.. California State University; Estados Unido

    A single scaling parameter as a first approximation to describe the rainfall pattern of a place: application on Catalonia

    Get PDF
    As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity–duration–frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.Peer ReviewedPostprint (author's final draft
    corecore