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Clustering transition in a system of particles self-consistently driven by a shear flow
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We introduce a simple model of active transport for an ensemble of particles driven by an external shear
flow. Active refers to the fact that the flow of the particles is modified by the distribution of particles itself. The
model consists in that the effective velocity of every particle is given by the average of the external flow
velocities felt by the particles located at a distance less than a typical r&diNsimerical analysis reveals the
existence of a transition to clustering depending on the parameters of the external flowRn @ntinuum
description in terms of the number density of particles is derived, and a linear stability analysis of the density
equation is performed in order to characterize the transitions observed in the model of interacting particles.
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I. INTRODUCTION pendently of the rest but in an average potential determined

Two different types of transport problems can be roughlysellf—conssten_tly from the motion Of all the partickss6]. I.n .
is way, the influence of any particle on the system is just

distinguished: passive and active. The case of passive trang hi ibuti h ial
port occurs when the transported quantity does not affect th rough its contribution to the potential.
In this work, we introduce a distinct type of self-

advecting flow, as exemplified by a dye immersed in a fluid, . del. At diff £ 1h field

or of any reacting substance like a chemical pollutant havin%onsstefr]]t transpc()jrtlmo el. At 'f erence o tfg me:?fg— 1€

no feedback on the carrying atmospheric or oceanic flw pproach, our model assumes a finite range of interaddon,
for any particle, so that particles only interact with others

Conversely, in the active transport problem, the subject o . ;
this paper, the flow itself is modified by the advected supSurrounding them. Equatiof2) takes the form

stance. Sometimes this is also referred as self-consistent dxi(t)
transport since the velocity field is in general determined by dt =V(Xi(1),Xir1(1) . Xiengiy (1), ©)
the substance via a dynamical constrd2it The tempera-
ture field, an ensemble of charged particles moving in a selfwhereNg(i) is the number of particles at distance less tRan
generated electric field, the vorticity of a fluid flow, and of particlei, and withi+1, ... i+Ng(i) we label these par-
gravitationally interacting particles, are a few examples reticles. Most importantly, the external flow givenand the
flecting the ubiquity and relevance of active transport proinvidual particles modify their response to the flow accord-
cesses In nature. ing to the local density around them. Like the mean-field
Recently, much progress has been achieved in both selpne, our model is an intermediate case between the passive
consistent and passive processes through its reformulatiafansport case and the many-body self-consistent models
within the Lagrangian descriptiof8,4], which studies trans- with real interactions decaying with distance. The aim of the
port in terms of individual particle trajectories instead of SCa-present paper is to show that even very simple active systems
lar fields. Thus, the Lagrangian description of a nonreactingan show a very rich behavior, and, in particular, the forma-
passive scalar in an external velocity fieldx, t), is given by tion of clusters of particles may appear. Also, due its simplic-
dx . ity one can present a detailed analytical study of the model,
— =Vv(X,t) + V2Dgn(t), (1) and show that clustering emerges as a deterministic instabil-
dt ity of the density equation of the system.
where Dy is the diffusion coefficient of the passive scalar, ~The paper is organized as follows. In the next section we
and z is a normalized Gaussian white noise with zero mearntroduce the model and present numerical results showing
and delta correlated in time. In E¢fL) the passive character the clustering. Then, in Sec. lll we derive the density equa-
is shown in the fact that there is no coupling between thdion for the dynamics of the particles, and perform a linear
equations of motion. On the contrary, in active transport thestability analysis of this continuum description. Then, we
interactions among particles alters the trajectory of any ofinish in Sec. IV with the summary of the work.
them, so that for an ensemble Wfparticles immersed in a

fluid flow one can write in generdb]
Il. SELF-CONSISTENT MODEL OF PARTICLES

dxi(t) _ DRIVEN BY AN EXTERNAL SHEAR FLOW:
ar - Voa® - x), @ NUMERICAL RESULTS

i=1,... N. ThisN-body problem is often treated in a mean- Let us consideN particles in a two-dimensional system

field approximation where every particle is considered inde-of sizeL X L, and the presence of a stationary incompressible
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two-dimensional shear flow(x,y)=(0,v(x)). In the model suited for nonswimming plankton species, so that they are
the effective velocity of particlé at timet, v¥"(t), which is  only driven by the flow, but they interact in such a way that
in the positionx;(t), is the average velocity of the external those which are close enough move approximately with the
velocities felt by the particles in itR-neighborhood. Math- same velocity. Taking also into account other kinds of inter-
ematically actions like birth, reproduction, death, grazing by other spe-
cies, etc., is disregarded for the sake of simplicity.
1 Concerning the clustering properties of the model, which
—> v(xj(1),1), (4) is the main focus of this work, it is clear that shear enhances
NR(1) 7 encounters among particles, and this favors that particles
group together due to the averaging of velocities. On the
axXi(t) _ et contrary, local strength of the _external velocity fiel_d _tends to
TR v, (5  disperse the particles, breaking clusters. Combining these
two effects a typical length scale is introduced:

vt =

where, as indicated beforbig(i) denotes the number of par-

ticles at a distance less th&of particlei, and the sum is _,_ {(dv(x)/dx)?)

restricted to the particleg such that|xi(t)—xj(t)|$R. Peri- - wx)? (6)

odic boundary conditions are considered, and finite-size ef- L ] ]

fects of the particles, like inertia and collisions, are ne-Here()=1/Lfgdx andX is related to the Taylor microscale
glected. Note that the self-consistent character of the moddlf turbulence, though here the meaning is somewhat differ-
comes from the fact that at every time the velocity of anyent since it refers to the length scale at which shear is com-
particle is determined by th@ocal) distribution of particles ~Parable to the amplitude of the velocity. Therefore, one ex-
itself. A noise term similar to Eq.1) could be added to the Pects the formation of clusters whenis smaller than the
right-hand sidéRHS) of Eq. (4), but this is not considered in typical interaction diameter,R2 In other words, the typical

this work and we just suppose that advection induced by théngth scale emerging from the comparison of shear and ve-
external flow dominates on the random motion of the indi-locity must be smaller than the scale at which we average the

vidual particles. velocity of any particle. On the other side, it is clear that
Two limits are clearly identifiedR— 0 is the tracer limit, WhenR=~L most of the particles of the system move with the

i.e., every particle is simply driven by the flow. In the oppo- same velocityfall the particles enter in the average sum of

site R—L all the particles move with the same velocity, EQ. (4], avoiding the aggregation of the particles. Thus our

which is just an average of the external velocity field over allnypothesis for clustering requires that

the particles in the system. Physically, the model mimics

particles transported by a flow and with some kind of effec- NM2<R<L. (7)

t'\(ti ?r(])n-local mteira(_:ttlorl\ t?ﬁt forcte t[lerfnl'tc') move chally To be specific, in the following the external shear flow is
with the same velocity. In the context ot iving organisms, given by v(x)=Ug+Vysin(wx/L), with L the system size
traffic or behavior of human societies many different models; , . - .
) : (which we takel. =1 so that all length scales are measured in
have been proposed where the density of particles modify _. - _
their velocity [7]: repulsion, attraction, distribution of re- nits of L), Uo, Vo positive constants, and=2mn, n
y L/l Tep ' ' =0,1,2,... . Forthis flow it is not difficult to calculatex

sources, cooperation, are some of the types of interactions ] 5 N e e 2
among the individuals that are usually studied. These inte = v1+2Ug/Vo/ o so that on taking/1+2p/Vo=2m, Eq.(7)

r
actions are mediate@h a biological frameworkthrough vi- be(l:zooTZSS 12:3 |2§:tr1b tion of particles the quantitative char-
sion, hearing, smelling or other kinds of sensing, which is patial cistributl part quantitativ

reflected, as in our model, by the appearence of a typicaqlcterization of clustering9] is performed by means of an

interaction radiusR. However, a crucial difference of these entropylike measure
biologically oriented models witlgd—5) is that in those the

particles are self-propelled, i.e., they have their own velocity. S, = _EM: m In m 8)

In our model, the velocity is externally given, and it is our SN N’

aim to study the properties of the system of particles depend-

ing on the characteristics of the external flow. where M is the number of boxes in which we divide the

Regarding a biological motivation, our model is particu- System, and is the number of particles in bax One has
larly adequate for aquatic organisms that modify their velocthat 0<Sy=<In M, such thatS,=0 is obtained when all the
ity as a response to other individuals living within a certainparticles are in just one of the boxes, and thdlivalue is
distance. Therefore, it is apropriate for nonswimming plankreached whemy=N/M for all i (Poisson distribution of par-
ton populations transported by the oceanic currgitsSpe-  ticles), i.e., S, decreases when the clustering increases. We
cifically, the two-dimensionality of the flow in the model is define the clustering coefficient &, =exp(Sy))/M, where
justified by the layered structure of the real oceanic flows, sq ); denotes a temporal average at long times, so that when
that a 2D shear flow is a good candidabe a first order there is no clusterin@€,, =~ 1. In the left panel of Fig. 1 we
approximation to investigate the role of horizontal shear in fix R=0.1 (much smaller than the system size 1) and plot
these real flows. Concerning the biological interaction be-C,, vsn observing that the transition to clustering is obtained
tween individuals, as just mentioned before, the model ifor n=5, fitting perfectly Eq(7). In the right panel we take
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FIG. 1. Left:Cy vs n with R=0.1. Right:Cy; vs R for n=10. In
both plots,Uy=10, \1+2(U3/V3) =2, and the time average is per-

formed over the last 2000 steps in a numerical simulation running_

for 5000 steps withdt=0.01.

n=10 and plotC,, vs R observing the two transitions indi-
cated in Eq(7). In Fig. 2 we plot the spatial distribution of
particles(in the left panel we plot the initial distributignn
the regime of clustering at time=16 (right) for R=0.1 and

n=10. Here one sees that the particles tend to aggrupate

following the sinusoidal flow.

Similar results are obtained for other shear flows. For ex=

ample, for the linear shear given byx)=I'x if xe[0,1/2]

andv(x)=I'(1-x) for x e [1/2,1], \ is 1/112 so that altering
the features of the external flogthe values ofl") the aggre-
gation properties of the system for fix€dare not changed.

However, transitions between nonclustering and clustering

distributions are observed by varyiiy
In the next section we explain analytically the transition

to clustering observed in the numerics. This is done by de-
riving the density evolution equation for the system of par-

ticles.

IIl. CONTINUUM DESCRIPTION IN TERMS OF THE
DENSITY OF PARTICLES: LINEAR STABILITY ANALYSIS

A continuum theory can give further insight on the model.
The process to obtain it is standdid], and we just present
here a sketch: define the number particle density(ast)
=3N . pi(x,1)==N, 8(x;(t)-x), then use an arbitrary function

1
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FIG. 2. Spatial distributiorgstatistically stationaryof particles
at timet=0 (left), andt=16 (right pane). HereR=0.1,n=10, Uy
=1, (1 +2(U3/V3))=2m, and the initial number of particlenl,
=1500.
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f(x) defined on the coordinate space, and take the time de-
rivative on both sides of the obvious relatiof(x;(t))
=Jdx pi(x,0)f(x). Finally, using fix-ym<rdX p(x,t)=Ng(i)

one arrives at

p(X,t)J drv(r,t)p(r,t)
[r-x|<R

f dr p(r,t)
[r-x]<R

Note that we have maintained the time dependence of the
velocity field to reflect the generality of the approach. Equa-
tion (9) can be simply read that the density of particles is
driven by the  effective  velocity vef(x,t)
Jr—xj=rdr v(r,t)p(r ,t)/ [, <gdr p(r,t), whose depen-
dence on the density reveals the self-consistent character of
the model. Note also the two trivial limitga) R— 0 or pas-
sive limit, ve'f(x,t) — v(x,t), and(b) R— 1 (L=1) for which
vefi(x,t)— (1/N) fdrp(r ,t)v(r 1), i.e., the average velocity

of the system of particles, which is the same for all of them
(and constant for a time-independent velocity field

Next we make a linear stability analysis of the stationary
omogenous solutiorp,, of Eq. (9). We first write p(x,t)
pot+ep(x,t) wheree is a small parameter, angi(x,t) the
space-time dependent perturbation, and substitute it in Eq.
(9). To first order ine, using incompressibility of the flow
and denoting/g=J|;_<r, We obtain

dp(X,t) + V- =0. (9

1 1
o+ ﬁg(x) Vi + ﬁvx ' fB drv(r,t)y(r,t)

1

(7R?)? (10

g(x) f dry(r,t)=0,
B

with g(x)=[gdr v (r,t). Though linear, the above expression
is still rather complicated since it is nonlocal in space. For
the sinusoidal shear flowtaking for simplicity and without
lost of generality Uy=0), we have that g(x)
=y2m(R/ ) sin(wX)J;(wR) with ¥ a unitary vector in they
direction, andJ; the first order Bessel function, so that Eq.
(10) becomes

n 2V0J1((,UR)
wR

X Sin(wx) dy i

+ %ﬂyl fB dr sin(wfx)lﬂ(rx'ry't)]

B 2VoJi(wR)
ToR®

sin(wx)&ylf dr w(r,t)] =0, (11
B

wherer =(r,,r,).

We are mainly interested in the clustering transition
driven by the relative values of and R, so that we next
consider the limitR<1. It is very important to note that, to
keep the expansion iR consistent, all length scales of the
system must also be very small compared with the system
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size. SpecificallyA=1/w<1, so that in particular, one can- tering emerges in the system. Thus we look for the condi-
not expand the simr,) in the integrand in Eq(11). Let us tions to haveA >0. Using the exponential formula for the
detail the calculations. The two integrals appearing in Egsine and cosine functions, and substituting expresgisnin
(11) have the approximationgor simplicity of notation we  Eq. (14) we obtain, after grouping the terms with the same
skip the time dependenge exponential argument,

Amem+ d’m—l[al - Bm] + ¢m+1[a2 - lgm] =0, (16

with a1:a1@/2—a2&)K/2+a2w&)/2, azz—ala)/Z—aza)K/Z
-aowl/2, and B=a,wwn/2, with the notations a;
=f dr’zﬂ(r)’(+x,r)’,+y) =2VpJi(wR)/ (wR) anda,=4VyJy(wR)/ w.
Ir'[<R For a simple theoretical analysis we just consider the

Ia:f dr (ry,ry)
B

three Fourier modem=0, 1 and neglect the rest. Diago-
= J dr'[gAx,y) + 1 ydygh(X,y) + 1y ih(x,y)] nalizing the corresponding>33 matrix of coefficients of the
Ir'l<R system in Eq(16) we obtain three eigevanlues, one zero and
= 7R2y(x,y) + O(RY), (12)  the other two given by
L= | drsi AL(K) = + Vo0 B 40RLD, - 2R, (17)
b= iN(wr ) (ryry) + R 2 wRLJy :
B

where the Bessel functiong; and J,, are evaluated abR.
:J dr’ sin(wry + wX)gry+Xx,ry +y) The expression foA, is quadratic inK with a positive co-
Ir'|<R efficient for the term inK?, so that taking into account that
-w/2=K=w/2, the inestability is obtained when (K

=~ f sin(ory + wX)[(X,y) + rydyih+ o] =w/2) is positive, i.e.,
Ir'|<R
_ 2mJy(«RR sin(wX) Jy(0wR)?w?’R? - 20RI(wR)J1(wR) - J;(wR)2= 0.
® (18
2
+ M codwx)a, i+ O(RY). (13) Numerically one solves the above inequality and obtains that
1) the condition for instability iswR=2.5, which, despite the

many approximations made to derive it, fits well with the
numerical result 1b=<2R [Eq. (7) for Uy=0]. We have
checked that the above result is improved by including more
modes in the Floquet analysis. In particular, considermg
=0,+1, +2, the final condition for the maximum exponent to
be positive iswR=1.32. We believe that in the limim
—oo the numerical result is approached. Therefore this
codwX) R =0 analysis confirms that the derived continuum description Eq.
Xy ' (9) properly describes the discrete interacting particles
(14) _model_,_and that the _clusterin_g emerges as a deterministic
instability of the density equation.

Here O(R* indicates terms of ordeR* and superior. After

substituting expressiond2) and(13) in Eg. (11) the evolu-

tion of the perturbation in the smaR limit (or better, when

the typical length scales of the problem are sinialifinally

given by

+ ZVOJ]_((,()R) 4VOJ2((1)R)
w w

oy Sin(wX) dy i +

where we have neglected terms of ordRer
Two fundamental features further simplifies the analysis:

(a) the coefficients are periodic in the spatial coordinates so V. SUMMARY

that Floquet theory can be applied, afiij the coefficients

are independent of thg coordinates so that plane waves are

solutions on they direction. Therefore we make the ansatz

In this work we have proposed a very simple model for an
ensemble of particles self-consistently driven by an external
shear flow. Despite its simplicity the model shows a very
interesting behavior where a transition to grouping of par-
ticles are observed. An hypothesis for the appearence of the
clustering has been presented. It essentially says that the
clustering appears when the length scale that comes from the
where, because of periodic boundary conditiond, comparison of the shear flow and the velocity field ampli-
=2mp (p=1,2,..), K=27p(p=1,2,..), and ¢, are com- tudes is smaller than the typical interaction radius of the
plex coefficientsK is restricted to the first Brillouin zone particles. This hypothesis has been numerically checked and

l,b(X,y,t) - eAt+i&)y+in E d)meiwxm, (15)

m=—o

determined by w/2<K<=w/2, anda is not bounded. also a continuum description has been derived that confirms
If any of the eigenvalued is positive then the perturba- it.
tion grows(the homogenous solution is unstgbénd clus- A more realistic interaction of the particles, for example
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decaying with the distance withiR, and the interaction of
this with other biological processes of the individudike
birth, death, etg.is planned to be studied in the future. Also,
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