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We introduce a simple model of active transport for an ensemble of particles driven by an external shear
flow. Active refers to the fact that the flow of the particles is modified by the distribution of particles itself. The
model consists in that the effective velocity of every particle is given by the average of the external flow
velocities felt by the particles located at a distance less than a typical radius,R. Numerical analysis reveals the
existence of a transition to clustering depending on the parameters of the external flow and onR. A continuum
description in terms of the number density of particles is derived, and a linear stability analysis of the density
equation is performed in order to characterize the transitions observed in the model of interacting particles.

DOI: 10.1103/PhysRevE.70.066205 PACS number(s): 05.45.2a, 05.60.2k

I. INTRODUCTION

Two different types of transport problems can be roughly
distinguished: passive and active. The case of passive trans-
port occurs when the transported quantity does not affect the
advecting flow, as exemplified by a dye immersed in a fluid,
or of any reacting substance like a chemical pollutant having
no feedback on the carrying atmospheric or oceanic flow[1].
Conversely, in the active transport problem, the subject of
this paper, the flow itself is modified by the advected sub-
stance. Sometimes this is also referred as self-consistent
transport since the velocity field is in general determined by
the substance via a dynamical constraint[2]. The tempera-
ture field, an ensemble of charged particles moving in a self-
generated electric field, the vorticity of a fluid flow, and
gravitationally interacting particles, are a few examples re-
flecting the ubiquity and relevance of active transport pro-
cesses in nature.

Recently, much progress has been achieved in both self-
consistent and passive processes through its reformulation
within the Lagrangian description[3,4], which studies trans-
port in terms of individual particle trajectories instead of sca-
lar fields. Thus, the Lagrangian description of a nonreacting
passive scalar in an external velocity field,vsx ,td, is given by

dx

dt
= vsx,td + Î2D0hstd, s1d

where D0 is the diffusion coefficient of the passive scalar,
andh is a normalized Gaussian white noise with zero mean
and delta correlated in time. In Eq.(1) the passive character
is shown in the fact that there is no coupling between the
equations of motion. On the contrary, in active transport the
interactions among particles alters the trajectory of any of
them, so that for an ensemble ofN particles immersed in a
fluid flow one can write in general[5]

dxistd
dt

= v„x1std, . . . ,xNstd…, s2d

i =1, . . . ,N. This N-body problem is often treated in a mean-
field approximation where every particle is considered inde-

pendently of the rest but in an average potential determined
self-consistently from the motion of all the particles[2,6]. In
this way, the influence of any particle on the system is just
through its contribution to the potential.

In this work, we introduce a distinct type of self-
consistent transport model. At difference of the mean-field
approach, our model assumes a finite range of interaction,R,
for any particle, so that particles only interact with others
surrounding them. Equation(2) takes the form

dxistd
dt

= v„xistd,xi+1std . . . ,xi+NRsidstd…, s3d

whereNRsid is the number of particles at distance less thanR
of particle i, and with i +1, . . . ,i +NRsid we label these par-
ticles. Most importantly, the external flow isgiven and the
invidual particles modify their response to the flow accord-
ing to the local density around them. Like the mean-field
one, our model is an intermediate case between the passive
transport case and the many-body self-consistent models
with real interactions decaying with distance. The aim of the
present paper is to show that even very simple active systems
can show a very rich behavior, and, in particular, the forma-
tion of clusters of particles may appear. Also, due its simplic-
ity one can present a detailed analytical study of the model,
and show that clustering emerges as a deterministic instabil-
ity of the density equation of the system.

The paper is organized as follows. In the next section we
introduce the model and present numerical results showing
the clustering. Then, in Sec. III we derive the density equa-
tion for the dynamics of the particles, and perform a linear
stability analysis of this continuum description. Then, we
finish in Sec. IV with the summary of the work.

II. SELF-CONSISTENT MODEL OF PARTICLES
DRIVEN BY AN EXTERNAL SHEAR FLOW:

NUMERICAL RESULTS

Let us considerN particles in a two-dimensional system
of sizeL3L, and the presence of a stationary incompressible
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two-dimensional shear flowvsx,yd=s0,vsxdd. In the model
the effective velocity of particlei at time t, vi

ef fstd, which is
in the positionxistd, is the average velocity of the external
velocities felt by the particles in itsR-neighborhood. Math-
ematically

vi
ef fstd =

1

NRsidoj

v„x jstd,t…, s4d

dxistd
dt

= vi
ef fstd, s5d

where, as indicated before,NRsid denotes the number of par-
ticles at a distance less thanR of particle i, and the sum is
restricted to the particlesj such thatuxistd−x jstduøR. Peri-
odic boundary conditions are considered, and finite-size ef-
fects of the particles, like inertia and collisions, are ne-
glected. Note that the self-consistent character of the model
comes from the fact that at every time the velocity of any
particle is determined by the(local) distribution of particles
itself. A noise term similar to Eq.(1) could be added to the
right-hand side(RHS) of Eq. (4), but this is not considered in
this work and we just suppose that advection induced by the
external flow dominates on the random motion of the indi-
vidual particles.

Two limits are clearly identified,R→0 is the tracer limit,
i.e., every particle is simply driven by the flow. In the oppo-
site R→L all the particles move with the same velocity,
which is just an average of the external velocity field over all
the particles in the system. Physically, the model mimics
particles transported by a flow and with some kind of effec-
tive non-local interaction that force them to move locally
with the same velocity. In the context of living organisms,
traffic or behavior of human societies many different models
have been proposed where the density of particles modify
their velocity [7]: repulsion, attraction, distribution of re-
sources, cooperation, are some of the types of interactions
among the individuals that are usually studied. These inter-
actions are mediated(in a biological framework) through vi-
sion, hearing, smelling or other kinds of sensing, which is
reflected, as in our model, by the appearence of a typical
interaction radius,R. However, a crucial difference of these
biologically oriented models with(4–5) is that in those the
particles are self-propelled, i.e., they have their own velocity.
In our model, the velocity is externally given, and it is our
aim to study the properties of the system of particles depend-
ing on the characteristics of the external flow.

Regarding a biological motivation, our model is particu-
larly adequate for aquatic organisms that modify their veloc-
ity as a response to other individuals living within a certain
distance. Therefore, it is apropriate for nonswimming plank-
ton populations transported by the oceanic currents[8]. Spe-
cifically, the two-dimensionality of the flow in the model is
justified by the layered structure of the real oceanic flows, so
that a 2D shear flow is a good candidate(in a first order
approximation) to investigate the role of horizontal shear in
these real flows. Concerning the biological interaction be-
tween individuals, as just mentioned before, the model is

suited for nonswimming plankton species, so that they are
only driven by the flow, but they interact in such a way that
those which are close enough move approximately with the
same velocity. Taking also into account other kinds of inter-
actions like birth, reproduction, death, grazing by other spe-
cies, etc., is disregarded for the sake of simplicity.

Concerning the clustering properties of the model, which
is the main focus of this work, it is clear that shear enhances
encounters among particles, and this favors that particles
group together due to the averaging of velocities. On the
contrary, local strength of the external velocity field tends to
disperse the particles, breaking clusters. Combining these
two effects a typical length scale is introduced:

l−2 =
k„dvsxd/dx…2l

kvsxd2l
. s6d

Herek l=1/Le0
Ldx, andl is related to the Taylor microscale

of turbulence, though here the meaning is somewhat differ-
ent since it refers to the length scale at which shear is com-
parable to the amplitude of the velocity. Therefore, one ex-
pects the formation of clusters whenl is smaller than the
typical interaction diameter, 2R. In other words, the typical
length scale emerging from the comparison of shear and ve-
locity must be smaller than the scale at which we average the
velocity of any particle. On the other side, it is clear that
whenR<L most of the particles of the system move with the
same velocity[all the particles enter in the average sum of
Eq. (4)], avoiding the aggregation of the particles. Thus our
hypothesis for clustering requires that

l/2 ø R, L. s7d

To be specific, in the following the external shear flow is
given by vsxd=U0+V0 sinsvx/Ld, with L the system size
(which we takeL=1 so that all length scales are measured in
units of L), U0, V0 positive constants, andv=2pn, n
=0,1,2, . . . . Forthis flow it is not difficult to calculatel
=Î1+2U0

2/V0
2/v so that on takingÎ1+2U0

2/V0
2=2p, Eq. (7)

becomes 1/nø2R,1.
For a spatial distribution of particles the quantitative char-

acterization of clustering[9] is performed by means of an
entropylike measure

SM = − o
i=1

M
mi

N
ln

mi

N
, s8d

where M is the number of boxes in which we divide the
system, andmi is the number of particles in boxi. One has
that 0øSM ø ln M, such thatSM =0 is obtained when all the
particles are in just one of the boxes, and the lnM value is
reached whenmi =N/M for all i (Poisson distribution of par-
ticles), i.e., SM decreases when the clustering increases. We
define the clustering coefficient asCM =expskSMltd /M, where
k lt denotes a temporal average at long times, so that when
there is no clusteringCM <1. In the left panel of Fig. 1 we
fix R=0.1 (much smaller than the system sizeL=1) and plot
CM vs n observing that the transition to clustering is obtained
for n<5, fitting perfectly Eq.(7). In the right panel we take
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n=10 and plotCM vs R observing the two transitions indi-
cated in Eq.(7). In Fig. 2 we plot the spatial distribution of
particles(in the left panel we plot the initial distribution) in
the regime of clustering at timet=16 (right) for R=0.1 and
n=10. Here one sees that the particles tend to aggrupate
following the sinusoidal flow.

Similar results are obtained for other shear flows. For ex-
ample, for the linear shear given byvsxd=Gx if xP f0,1/2g
andvsxd=Gs1−xd for xP f1/2,1g, l is 1/Î12 so that altering
the features of the external flow(the values ofG) the aggre-
gation properties of the system for fixedR are not changed.
However, transitions between nonclustering and clustering
distributions are observed by varyingR.

In the next section we explain analytically the transition
to clustering observed in the numerics. This is done by de-
riving the density evolution equation for the system of par-
ticles.

III. CONTINUUM DESCRIPTION IN TERMS OF THE
DENSITY OF PARTICLES: LINEAR STABILITY ANALYSIS

A continuum theory can give further insight on the model.
The process to obtain it is standard[10], and we just present
here a sketch: define the number particle density asrsx ,td
=oi=1

N risx ,td=oi=1
N dsxistd−xd, then use an arbitrary function

fsxd defined on the coordinate space, and take the time de-
rivative on both sides of the obvious relationf(xistd)
=edx risx ,tdfsxd. Finally, using eux−xistduøRdx rsx ,td=NRsid
one arrives at

]trsx,td + =x ·3rsx,tdE
ur−xuøR

dr v sr ,tdrsr ,td

E
ur−xuøR

dr rsr ,td 4 = 0. s9d

Note that we have maintained the time dependence of the
velocity field to reflect the generality of the approach. Equa-
tion (9) can be simply read that the density of particles is
driven by the effective velocity vef fsx ,td
=eur−xuøRdr vsr ,tdrsr ,td /eur−xuøRdr rsr ,td, whose depen-
dence on the density reveals the self-consistent character of
the model. Note also the two trivial limits:(a) R→0 or pas-
sive limit, vef fsx ,td→vsx ,td, and(b) R→1 sL=1d for which
vef fsx ,td→ s1/Ndedrrsr ,tdvsr ,td, i.e., the average velocity
of the system of particles, which is the same for all of them
(and constant for a time-independent velocity field).

Next we make a linear stability analysis of the stationary
homogenous solution,r0, of Eq. (9). We first write rsx ,td
=r0+ecsx ,td wheree is a small parameter, andcsx ,td the
space-time dependent perturbation, and substitute it in Eq.
(9). To first order ine, using incompressibility of the flow
and denotingeB=eur−xuøR, we obtain

]tc +
1

pR2gsxd · =xc +
1

pR2=x ·E
B

dr v sr ,tdcsr ,td

−
1

spR2d2gsxd ·E
B

drcsr ,td = 0, s10d

with gsxd=eBdr v sr ,td. Though linear, the above expression
is still rather complicated since it is nonlocal in space. For
the sinusoidal shear flow(taking for simplicity and without
lost of generality U0=0), we have that gsxd
= ŷ2psR/vd sinsvxdJ1svRd with ŷ a unitary vector in they
direction, andJ1 the first order Bessel function, so that Eq.
(10) becomes

]tc +
2V0J1svRd

vR
sinsvxd]yc

+
V0

pR2]yFE
B

dr sinsvrxdcsrx,ry,tdG
−

2V0J1svRd
pvR3 sinsvxd]yFE

B

dr csr ,tdG = 0, s11d

wherer =srx,ryd.
We are mainly interested in the clustering transition

driven by the relative values ofl and R, so that we next
consider the limitR!1. It is very important to note that, to
keep the expansion inR consistent, all length scales of the
system must also be very small compared with the system

FIG. 1. Left:CM vs n with R=0.1. Right:CM vs R for n=10. In
both plots,U0=10,Î1+2sU0

2/V0
2d=2p, and the time average is per-

formed over the last 2000 steps in a numerical simulation running
for 5000 steps withdt=0.01.

FIG. 2. Spatial distribution(statistically stationary) of particles
at time t=0 (left), and t=16 (right panel). HereR=0.1, n=10, U0

=1, Î(1+2sU0
2/V0

2d)=2p, and the initial number of particlesN0

=1500.
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size. Specifically,l=1/v!1, so that in particular, one can-
not expand the sinsvrxd in the integrand in Eq.(11). Let us
detail the calculations. The two integrals appearing in Eq.
(11) have the approximations(for simplicity of notation we
skip the time dependence)

Ia =E
B

dr csrx,ryd

=E
ur8uøR

dr 8csrx8 + x,ry8 + yd

< E
ur8uøR

dr 8fcsx,yd + rx8]ycsx,yd + ry8]ycsx,ydg

= pR2csx,yd + QsR4d, s12d

Ib =E
B

dr sinsvrxdcsrx,ryd

=E
ur8uøR

dr 8 sinsvrx8 + vxdcsrx + x,ry8 + yd

< E
ur8uøR

sinsvrx8 + vxdfcsx,yd + rx8]yc + ry8]ycg

=
2pJ1svRdR

v
sinsvxdc

+
4pR2J2svRd

v
cossvxd]xc + QsR4d. s13d

Here QsR4d indicates terms of orderR4 and superior. After
substituting expressions(12) and (13) in Eq. (11) the evolu-
tion of the perturbation in the smallR limit (or better, when
the typical length scales of the problem are small) is finally
given by

]tc +
2V0J1svRd

vR
sinsvxd]yc +

4V0J2svRd
v

cossvxd]xy
2 c = 0,

s14d

where we have neglected terms of orderR.
Two fundamental features further simplifies the analysis:

(a) the coefficients are periodic in the spatial coordinates so
that Floquet theory can be applied, and(b) the coefficients
are independent of they coordinates so that plane waves are
solutions on they direction. Therefore we make the ansatz

csx,y,td = eLt+iv̂y+iKx o
m=−`

`

fmeivxm, s15d

where, because of periodic boundary conditions,v̂
=2pp sp=1,2, . . .d, K=2ppsp=1,2, . . .d, and fm are com-
plex coefficients.K is restricted to the first Brillouin zone
determined by −v /2øKøv /2, andv̂ is not bounded.

If any of the eigenvaluesL is positive then the perturba-
tion grows(the homogenous solution is unstable) and clus-

tering emerges in the system. Thus we look for the condi-
tions to haveL.0. Using the exponential formula for the
sine and cosine functions, and substituting expression(15) in
Eq. (14) we obtain, after grouping the terms with the same
exponential argument,

Lmfm + fm−1fa1 − bmg + fm+1fa2 − bmg = 0, s16d

with a1=a1v̂ /2−a2v̂K /2+a2vv̂ /2, a2=−a1v̂ /2−a2v̂K /2
−a2vv̂ /2, and b=a2vv̂ /2, with the notations a1
=2V0J1svRd / svRd anda2=4V0J2svRd /v.

For a simple theoretical analysis we just consider the
three Fourier modesm=0, ±1 and neglect the rest. Diago-
nalizing the corresponding 333 matrix of coefficients of the
system in Eq.(16) we obtain three eigevanlues, one zero and
the other two given by

L±sKd = ±
V0v̂

vR
Î8J2

2K2R2 − 4vRJ2J1 − 2J1
2, s17d

where the Bessel functions,J1 and J2, are evaluated atvR.
The expression forL+ is quadratic inK with a positive co-
efficient for the term inK2, so that taking into account that
−v /2øKøv /2, the inestability is obtained whenL+sK
=v /2d is positive, i.e.,

J2svRd2v2R2 − 2vRJ2svRdJ1svRd − J1svRd2 ù 0.

s18d

Numerically one solves the above inequality and obtains that
the condition for instability isvRù2.5, which, despite the
many approximations made to derive it, fits well with the
numerical result 1 /vø2R [Eq. (7) for U0=0]. We have
checked that the above result is improved by including more
modes in the Floquet analysis. In particular, consideringm
=0, ±1, ±2, the final condition for the maximum exponent to
be positive isvRù1.32. We believe that in the limitm
→` the numerical result is approached. Therefore this
analysis confirms that the derived continuum description Eq.
(9) properly describes the discrete interacting particles
model, and that the clustering emerges as a deterministic
instability of the density equation.

IV. SUMMARY

In this work we have proposed a very simple model for an
ensemble of particles self-consistently driven by an external
shear flow. Despite its simplicity the model shows a very
interesting behavior where a transition to grouping of par-
ticles are observed. An hypothesis for the appearence of the
clustering has been presented. It essentially says that the
clustering appears when the length scale that comes from the
comparison of the shear flow and the velocity field ampli-
tudes is smaller than the typical interaction radius of the
particles. This hypothesis has been numerically checked and
also a continuum description has been derived that confirms
it.

A more realistic interaction of the particles, for example
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decaying with the distance withinR, and the interaction of
this with other biological processes of the individuals(like
birth, death, etc.) is planned to be studied in the future. Also,
it will be interesting a detailed study of the role of a noise
term in the dynamics of the particles(which in the con-
tinuum description is a diffusion term), and the analysis
when a chaotic flow is considered.
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