Finite Larmor radius (FLR) effects on non-diffusive transport in a
prototypical zonal flow with drift waves are studied in the context of a
simplified chaotic transport model. The model consists of a superposition of
drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow
perpendicular to the density gradient. High frequency FLR effects are
incorporated by gyroaveraging the ExB velocity. Transport in the direction of
the density gradient is negligible and we therefore focus on transport parallel
to the zonal flows. A prescribed asymmetry produces strongly asymmetric non-
Gaussian PDFs of particle displacements, with L\'evy flights in one direction
but not the other. For zero Larmor radius, a transition is observed in the
scaling of the second moment of particle displacements. However, FLR effects
seem to eliminate this transition. The PDFs of trapping and flight events show
clear evidence of algebraic scaling with decay exponents depending on the value
of the Larmor radii. The shape and spatio-temporal self-similar anomalous
scaling of the PDFs of particle displacements are reproduced accurately with a
neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma