The study of diffusion in Hamiltonian systems has been a problem of interest
for a number of years.
In this paper we explore the influence of self-consistency on the diffusion
properties of systems described by coupled symplectic maps. Self-consistency,
i.e. the back-influence of the transported quantity on the velocity field of
the driving flow, despite of its critical importance, is usually overlooked in
the description of realistic systems, for example in plasma physics. We propose
a class of self-consistent models consisting of an ensemble of maps globally
coupled through a mean field. Depending on the kind of coupling, two different
general types of self-consistent maps are considered: maps coupled to the field
only through the phase, and fully coupled maps, i.e. through the phase and the
amplitude of the external field. The analogies and differences of the diffusion
properties of these two kinds of maps are discussed in detail.Comment: 13 pages, 14 figure