130 research outputs found

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    Black nurse, white milk:Breastfeeding, slavery, and abolition in 19th-Century Brazil

    Get PDF
    Brazil imported more enslaved Africans than any other slave-owning society in the Americas, and it was the last country in the western hemisphere to abolish the institution. Whereas many enslaved persons toiled on plantations and in mines, urban slavery was also prominent, with enslaved men carrying coffee through the streets and enslaved women washing clothes. One gendered aspect of urban slavery in 19th-century Brazil included slave owners renting out enslaved women as wet nurses to breastfeed the children of elite families. This article reviews medical dissertations, debates, and journal articles, as well as advertisements for wet nurses, showing that physicians believed that enslaved women’s milk was both nutritionally and morally inferior to white women’s milk. In the latter half of the 19th century, physicians viewed abolition as the only answer to what they deemed the increasingly “dangerous” practice of enslaved wet nursing, which they believed was the root cause of high infant mortality rates across races and classes. Readers should consider the ethical dilemmas of the practice of enslaved wet nursing, which often resulted in the violent separation of mother and child

    GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

    Get PDF
    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described

    The global abundance of tree palms

    Get PDF

    Sensitivity of South American tropical forests to an extreme climate anomaly

    Get PDF
    The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015–2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (−0.02 ± 0.37 Mg C ha−1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015–2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected

    Water table depth modulates productivity and biomass across Amazonian forests

    Get PDF
    Aim: Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of climatic water supply on plants are likely to be modulated by soil water conditions. / Location: Lowland Amazonian forests. / Time period: 1971–2019. / Methods: We used 344 long-term inventory plots distributed across Amazonia to analyse the effects of long-term climatic and edaphic water supply on forest functioning. We modelled forest structure and dynamics as a function of climatic, soil-water and edaphic properties. / Results: Water supplied by both precipitation and groundwater affects forest structure and dynamics, but in different ways. Forests with a shallow water table (depth <5 m) had 18% less above-ground woody productivity and 23% less biomass stock than forests with a deep water table. Forests in drier climates (maximum cumulative water deficit < −160 mm) had 21% less productivity and 24% less biomass than those in wetter climates. Productivity was affected by the interaction between climatic water deficit and water table depth. On average, in drier climates the forests with a shallow water table had lower productivity than those with a deep water table, with this difference decreasing within wet climates, where lower productivity was confined to a very shallow water table. / Main conclusions: We show that the two extremes of water availability (excess and deficit) both reduce productivity in Amazon upland (terra-firme) forests. Biomass and productivity across Amazonia respond not simply to regional climate, but rather to its interaction with water table conditions, exhibiting high local differentiation. Our study disentangles the relative contribution of those factors, helping to improve understanding of the functioning of tropical ecosystems and how they are likely to respond to climate change

    Water table depth modulates productivity and biomass across Amazonian forests

    Get PDF
    Funding: This work was part of the PhD thesis of the first author, developed at the Graduate Program in Ecology of the National Institute of Amazonian Research (INPA), with a fellowship funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), Finance Code 001, (88887.141433/2017-00). The authors are also grateful for the financial and research support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Amazonas State Research Foundation (FAPEAM), the Newton Fund via the Natural Environment Research Council (NE/M022021/1 to O.L.P. and F.R.C.C.), PPBio Manaus, Centro de Estudos Integrados da Biodiversidade Amazônica and RAINFOR. We also thank Karina Melgaço, Aurora Levesley and Gabriela Lopez-Gonzalez for curating and managing ForestPlots.net. This was ForestPlots.net Project 26 led by Thaiane Sousa. This is publication number 832 of the Technical Series of the Biological Dynamics of Forest Fragments Project (BDFFP, INPA/STRI).Aim : Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of climatic water supply on plants are likely to be modulated by soil water conditions. Location : Lowland Amazonian forests. Time period : 1971–2019. Methods : We used 344 long-term inventory plots distributed across Amazonia to analyse the effects of long-term climatic and edaphic water supply on forest functioning. We modelled forest structure and dynamics as a function of climatic, soil-water and edaphic properties. Results : Water supplied by both precipitation and groundwater affects forest structure and dynamics, but in different ways. Forests with a shallow water table (depth <5 m) had 18% less above-ground woody productivity and 23% less biomass stock than forests with a deep water table. Forests in drier climates (maximum cumulative water deficit < −160 mm) had 21% less productivity and 24% less biomass than those in wetter climates. Productivity was affected by the interaction between climatic water deficit and water table depth. On average, in drier climates the forests with a shallow water table had lower productivity than those with a deep water table, with this difference decreasing within wet climates, where lower productivity was confined to a very shallow water table. Main conclusions : We show that the two extremes of water availability (excess and deficit) both reduce productivity in Amazon upland (terra-firme) forests. Biomass and productivity across Amazonia respond not simply to regional climate, but rather to its interaction with water table conditions, exhibiting high local differentiation. Our study disentangles the relative contribution of those factors, helping to improve understanding of the functioning of tropical ecosystems and how they are likely to respond to climate change.Peer reviewe

    The pace of life for forest trees.

    Get PDF
    Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes

    Tropical forests in the Americas are changing too slowly to track climate change

    Get PDF
    Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change
    corecore