27 research outputs found

    A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries

    No full text
    Abstract Many problems related to disorders and defects of bone tissue caused by aging, diseases, and injuries have been solved by the multidisciplinary research field of regenerative medicine and tissue engineering. Numerous sciences, especially nanotechnology, along with tissue engineering, have greatly contributed to the repair and regeneration of tissues. Various studies have shown that the presence of magnetic nanoparticles (MNPs) in the structure of composite scaffolds increases their healing effect on bone defects. In addition, the induction of osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of these nanoparticles has been investigated and confirmed by various studies. Therefore, in the present article, the types of MNPs, their special properties, and their application in the healing of damaged bone tissue have been reviewed. Also, the molecular effects of MNPs on cell behavior, especially in osteogenesis, have been discussed. Finally, the present article includes the potential applications of MNP-containing nanocomposite scaffolds in bone lesions and injuries. In summary, this review article highlights nanocomposite scaffolds containing MNPs as a solution for treating bone defects in tissue engineering and regenerative medicine

    Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels

    No full text
    Hydrogels are widely used for wound healing applications due to their similarity to the native extracellular matrix (ECM) and ability to provide a moist environment. However, lack of multifunctionality and low mechanical properties of previously developed hydrogels may limit their ability to support skin tissue regeneration. Incorporating various biomaterials and nanostructures into the hydrogels is an emerging approach to develop multifunctional hydrogels with new functions that are beneficial for wound healing. These multifunctional hydrogels can be fabricated with a wide range of functions and properties, including antibacterial, antioxidant, bioadhesive, and appropriate mechanical properties. Two approaches can be used for development of multifunctional hydrogel-based dressings; taking the advantages of the chemical composition of biomaterials and addition of nanomaterials or nanostructures. A large number of synthetic and natural polymers, bioactive molecules, or nanomaterials have been used to obtain hydrogel-based dressings with multifunctionality for wound healing applications. In the present review paper, advances in the development of multifunctional hydrogel-based dressings for wound healing have been highlighted. © 2020 Elsevier B.V

    An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage

    No full text
    AbstractMany traditional procedures, including surgical methods such as microfracture of subchondral bone and soft tissue transplantation, have been widely used to treat damaged cartilage. However, there is still no definitive cure for cartilage defects. In recent decades, tissue engineering has raised hopes for the repair of defective cartilage. Different approaches are used for cartilage engineering, in which cells, scaffolds, and biological signals or growth factors may be used alone or in combination. Additionally, the imitation of the mechanical properties of the natural cartilage tissue by bioreactors is also helpful in this regard. It should be noted that in the transplantation of engineered cartilage tissue, there are challenges such as poor integration, inflammation and phenotypic instability that may lead to failure of neo-cartilage transplantation. Therefore, a comprehensive understanding of the multiple therapeutic approaches, including surgical procedures, cell-based methods and tissue engineering, should be obtained. The present review article provides this information, along with a variety of factors, including cells, materials, and biological/biomechanical factors required for the engineering of cartilage tissue, as well as the challenges ahead and their solutions

    Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery

    No full text
    Piroxicam (PX), a main member of non-steroidal anti-inflammatory drugs (NSAIDs), is mainly used orally, which causes side effects of the gastrointestinal tract. It also has systemic effects when administered intramuscularly. Intra-articular (IA) delivery and encapsulation of PX in biodegradable poly-ε-caprolactone (PCL) nanoparticles (NPs) offer potential advantages over conventional oral delivery. The purpose of this study is the development of a new type of anti-inflammatory bio-agents containing collagen and PX-loaded NPs, as an example for an oral formulation replacement, for the prolonged release of PX. In this study, the PX was encapsulated in PCL NPs (size 102.7 ± 19.37 nm, encapsulation efficiency 92.83 ± 0.4410) by oil-in-water (o/w) emulsion solvent evaporation method. Nanoparticles were then characterized for entrapment efficiency, percent yield, particle size analysis, morphological characteristics, and in vitro drug release profiles. Eventually, the NPs synthesized with collagen were conjugated so that the NPs were trapped in the collagen sponges using a cross-linker. Finally, biocompatibility tests showed that the anti-inflammatory agents made in this study had no toxic effect on the cells. Based on the results, it appears that PX-loaded PCL NPs along with collagen (PPCLnp-Coll) can be promising for IA administration based on particulate drug delivery for the treatment of arthritis

    An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering

    No full text
    Tissue engineering, as an interdisciplinary approach, is seeking to create tissues with optimal performance for clinical applications. Various factors, including cells, biomaterials, cell or tissue culture conditions and signaling molecules such as growth factors, play a vital role in the engineering of tissues. In vivo microenvironment of cells imposes complex and specific stimuli on the cells, and has a direct effect on cellular behavior, including proliferation, differentiation and extracellular matrix (ECM) assembly. Therefore, to create appropriate tissues, the conditions of the natural environment around the cells should be well imitated. Therefore, researchers are trying to develop biomimetic scaffolds that can produce appropriate cellular responses. To achieve this, we need to know enough about biomimetic materials. Scaffolds made of biomaterials in musculoskeletal tissue engineering should also be multifunctional in order to be able to function better in mechanical properties, cell signaling and cell adhesion. Multiple combinations of different biomaterials are used to improve above-mentioned properties of various biomaterials and to better imitate the natural features of musculoskeletal tissue in the culture medium. These improvements ultimately lead to the creation of replacement structures in the musculoskeletal system, which are closer to natural tissues in terms of appearance and function. The present review article is focused on biocompatible and biomimetic materials, which are used in musculoskeletal tissue engineering, in particular, cartilage tissue engineering

    Melatonin and endothelial cell-loaded alginate-fibrin hydrogel promoted angiogenesis in rat cryopreserved/thawed ovaries transplanted to the heterotopic sites

    No full text
    Abstract Background Ischemic niche can promote follicular atresia following the transplantation of cryopreserved/thawed ovaries to the heterotopic sites. Thus, the promotion of blood supply is an effective strategy to inhibit/reduce the ischemic damage to ovarian follicles. Here, the angiogenic potential of alginate (Alg) + fibrin (Fib) hydrogel enriched with melatonin (Mel) and CD144+ endothelial cells (ECs) was assessed on encapsulated cryopreserved/thawed ovaries following transplantation to heterotopic sites in rats. Methods Alg + Fib hydrogel was fabricated by combining 2% (w/v) sodium Alg, 1% (w/v) Fib, and 5 IU thrombin at a ratio of 4: 2: 1, respectively. The mixture was solidified using 1% CaCl2. Using FTIR, SEM, swelling rate, and biodegradation assay, the physicochemical properties of Alg + Fib hydrogel were evaluated. The EC viability was examined using an MTT assay. Thirty-six adult female rats (aged between 6 and 8 weeks) with a normal estrus cycle were ovariectomized and enrolled in this study. Cryopreserved/thawed ovaries were encapsulated in Alg + Fib hydrogel containing 100 µM Mel + CD144+ ECs (2 × 104 cells/ml) and transplanted into the subcutaneous region. Ovaries were removed after 14 days and the expression of Ang-1, and Ang-2 was monitored using real-time PCR assay. The number of vWF+ and α-SMA+ vessels was assessed using IHC staining. Using Masson’s trichrome staining, fibrotic changes were evaluated. Results FTIR data indicated successful interaction of Alg with Fib in the presence of ionic cross-linker (1% CaCl2). Data confirmed higher biodegradation and swelling rates in Alg + Fib hydrogel compared to the Alg group (p < 0.05). Increased viability was achieved in encapsulated CD144+ ECs compared to the control group (p < 0.05). IF analysis showed the biodistribution of Dil+ ECs within hydrogel two weeks after transplantation. The ratio of Ang-2/Ang-1 was statistically up-regulated in the rats that received Alg + Fib + Mel hydrogel compared to the control-matched groups (p < 0.05). Based on the data, the addition of Mel and CD144+ ECs to Alg + Fib hydrogel reduced fibrotic changes. Along with these changes, the number of vWF+ and α-SMA+ vessels was increased in the presence of Mel and CD144+ ECs. Conclusions Co-administration of Alg + Fib with Mel and CD144+ ECs induced angiogenesis toward encapsulated cryopreserved/thawed ovarian transplants, resulting in reduced fibrotic changes
    corecore