111 research outputs found

    Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    Get PDF
    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction varies as the magnetic configuration changes from a parallel (P) to an anti-parallel (AP) configuration. Here we report the study on its as-yet-unexplored reciprocal effect, the magneto-Peltier effect, where the heat flow carried by the tunneling electrons is altered by changing the magnetic configuration of the MTJ. The magneto-Peltier signal that reflects the change in the temperature difference across the junction between the P and AP configurations scales linearly with the applied current in the small bias but is greatly enhanced in the large bias regime, due to higher-order Joule heating mechanisms. By carefully extracting the linear response which reflects the magneto-Peltier effect, and comparing it with the magneto-Seebeck measurements performed on the same device, we observe results consistent with Onsager reciprocity. We estimate a magneto-Peltier coefficient of 13.4 mV in the linear regime using a three-dimensional thermoelectric model. Our result opens up the possibility of programmable thermoelectric devices based on the Peltier effect in MTJs

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias

    Prevalence of Trachoma in Benishangul Gumuz Region, Ethiopia: Results of Seven Population-Based Surveys from the Global Trachoma Mapping Project.

    Get PDF
    PURPOSE: Trachoma is a major cause of blindness in Ethiopia, and targeted for elimination as a public health problem by the year 2020. Prevalence data are needed to plan interventions. We set out to estimate the prevalence of trachoma in each evaluation unit of grouped districts ("woredas") in Benishangul Gumuz region, Ethiopia. METHODS: We conducted seven cross-sectional community-based surveys, covering 20 woredas, between December 2013 and January 2014, as part of the Global Trachoma Mapping Project (GTMP). The standardized GTMP training package and methodologies were used. RESULTS: A total of 5828 households and 21,919 individuals were enumerated in the surveys. 19,583 people (89.3%) were present when survey teams visited. A total of 19,530 (99.7%) consented to examination, 11,063 (56.6%) of whom were female. The region-wide age- and sex-adjusted trichiasis prevalence in adults aged ≥15 years was 1.3%. Two evaluation units covering four woredas (Pawe, Mandura, Bulen and Dibate) with a combined rural population of 166,959 require implementation of the A, F and E components of the SAFE strategy (surgery, antibiotics, facial cleanliness and environmental improvement) for at least three years before re-survey, and intervention planning should begin for these woredas as soon as possible. CONCLUSION: Both active trachoma and trichiasis are public health problems in Benishangul Gumuz, which needs implementation of the full SAFE strategy

    Flux-pinning mediated superconducting diode effect in NbSe2/CrGeTe3 heterostructure

    Get PDF
    In ferromagnet/superconductor bilayer systems, dipolar fields from the ferromagnet can create asymmetric energy barriers for the formation and dynamics of vortices through flux pinning. Conversely, the flux emanating from vortices can pin the domain walls of the ferromagnet, thereby creating asymmetric critical currents. Here, we report the observation of a superconducting diode effect (SDE) in a NbSe2/CrGeTe3 van der Waals heterostructure in which the magnetic domains of CrGeTe3 control the Abrikosov vortex dynamics in NbSe2. In addition to extrinsic vortex pinning mechanisms at the edges of NbSe2, flux-pinning-induced bulk pinning of vortices can alter the critical current. This asymmetry can thus be explained by considering the combined effect of this bulk pinning mechanism along with the vortex tilting induced by the Lorentz force from the transport current in the NbSe2/CrGeTe3 heterostructure. We also provide evidence of critical current modulation by flux pinning depending on the history of the field setting procedure. Our results suggest a method of controlling the efficiency of the SDE in magnetically coupled van der Waals superconductors, where dipolar fields generated by the magnetic layer can be used to modulate the dynamics of the superconducting vortices in the superconductors

    Cooling and heating with electron spins: Observation of the spin Peltier effect

    Get PDF
    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. Connecting two materials with different Peltier coefficients causes a net heat flow towards or away from the interface, resulting in cooling or heating at the interface - the Peltier effect. Spintronics describes the transport of charge and angular momentum by making use of separate spin-up and spin-down channels. Recently, the merger of thermoelectricity with spintronics has given rise to a novel and rich research field named spin caloritronics. Here, we report the first direct experimental observation of refrigeration/heating driven by a spin current, a new spin thermoelectric effect which we call the spin Peltier effect. The heat flow is generated by the spin dependency of the Peltier coefficient inside the ferromagnetic material. We explored the effect in a specifically designed spin valve pillar structure by measuring the temperature using an electrically isolated thermocouple. The difference in heat flow between the two magnetic configurations leads to a change in temperature. With the help of 3-D finite element modeling, we extracted permalloy spin Peltier coefficients in the range of -0.9 to -1.3 mV. These results enable magnetic control of heat flow and provide new functionality for future spintronic devices

    Fluorine-induced improvement of structural and optical properties of CdTe thin films for solar cell efficiency enhancement

    Get PDF
    CdTe thin films of different thicknesses were electrodeposited and annealed in air after different chemical treatments to study the effects of thickness and the different chemical treatments on these films for photovoltaic applications. The thicknesses of the samples range from 1.1 μm to 2.1 μm and the annealing process was carried out after prior CdCl2 treatment and CdCl2+CdF2 treatment as well as without any chemical treatment. Detailed optical and structural characterisation of the as-deposited and annealed CdTe thin films using UV-Vis spectrophotometry and x-ray diffraction reveal that incorporating fluorine in the well-known CdCl2 treatment of CdTe produces remarkable improvement in the optical and structural properties of the materials. This CdCl2+CdF2 treatment produced solar cell with efficiency of 8.3% compared to CdCl2 treatment, with efficiency of 3.3%. The results reveal an alternative method of post-deposition chemical treatment of CdTe which can lead to the production of CdTe-based solar cells with enhanced photovoltaic conversion efficiencies compared to the use of only CdCl2. Keywords: CdTe; CdCl2

    Effect of growth temperature on the structural, optical and luminescence properties of cadmium telluride nanoparticles

    Get PDF
    Cadmium telluride (CdTe) has been successfully prepared by a simple wet chemical process at different reaction temperatures. Temperature is one parameter that thermodynamically plays an important role in controlling the growth rate, morphology, size and size distribution of the as-prepared nanoparticles (NPs). Effect of this parameter was investigated on the growth, structural and optical properties of CdTe NPs. It was observed that the Powder X-ray diffraction (XRD) pattern for samples prepared at 50 °C had many impurities from unreacted precursors while those prepared at > 100 °C displayed polycrystalline NPs. The XRD results revealed that the structure of the CdTe NPs was cubic with the planes (111), (220), (311) being the main observed peaks. The crystallite sizes obtained from Scherrer formula increased with the increase in growth temperature (2.86–3.62 nm grown at 50–200 °C respectively). The scanning electron microscopy micrographs showed that the morphology of the nanoparticles possessed spherical-shaped particles over the entire surface. This was further confirmed by high resolution transmission electron microscopy micrographs which also displayed increase in the particle size with an increase in the growth temperature. In the optic study, the photoluminescence (PL) spectra displayed a red shift (540–560 nm) in emission as growth temperature increased from 50 to 200 °C. The highest PL peak intensity was realized at a growth temperature of 150 °C. Absorption band maxima were observed to shift towards longer wavelength for higher growth temperatures. The optical band gap decreased with increase in the growth temperature from 2.67 to 2.08 eV for 50–200 °C respectively

    The Global Trachoma Mapping Project: Methodology of a 34-Country Population-Based Study.

    Get PDF
    PURPOSE: To complete the baseline trachoma map worldwide by conducting population-based surveys in an estimated 1238 suspected endemic districts of 34 countries. METHODS: A series of national and sub-national projects owned, managed and staffed by ministries of health, conduct house-to-house cluster random sample surveys in evaluation units, which generally correspond to "health district" size: populations of 100,000-250,000 people. In each evaluation unit, we invite all residents aged 1 year and older from h households in each of c clusters to be examined for clinical signs of trachoma, where h is the number of households that can be seen by 1 team in 1 day, and the product h × c is calculated to facilitate recruitment of 1019 children aged 1-9 years. In addition to individual-level demographic and clinical data, household-level water, sanitation and hygiene data are entered into the purpose-built LINKS application on Android smartphones, transmitted to the Cloud, and cleaned, analyzed and ministry-of-health-approved via a secure web-based portal. The main outcome measures are the evaluation unit-level prevalence of follicular trachoma in children aged 1-9 years, prevalence of trachomatous trichiasis in adults aged 15 + years, percentage of households using safe methods for disposal of human feces, and percentage of households with proximate access to water for personal hygiene purposes. RESULTS: In the first year of fieldwork, 347 field teams commenced work in 21 projects in 7 countries. CONCLUSION: With an approach that is innovative in design and scale, we aim to complete baseline mapping of trachoma throughout the world in 2015

    Prevalence of trachoma in the Afar Region of Ethiopia: results of seven population-based surveys from the Global Trachoma Mapping Project.

    Get PDF
    PURPOSE: Trachoma is to be eliminated as a public health problem by 2020. To help the process of planning interventions where needed, and to provide a baseline for later comparison, we set out to complete the map of trachoma in Afar, Ethiopia, by estimating trachoma prevalence in evaluation units (EUs) of grouped districts ("woredas"). METHODS: We conducted seven community-based surveys from August to October 2013, using standardised Global Trachoma Mapping Project (GTMP) survey methodologies. RESULTS: We enumerated 5065 households and 18,177 individuals in seven EUs covering 19 of Afar's 29 woredas; the other ten were not accessible. 16,905 individuals (93.0%) were examined, of whom 9410 (55.7%) were female. One EU incorporating four woredas (Telalak, Dalefage, Dewe, Hadele Ele) was shown to require full implementation of the SAFE strategy for three years before impact survey, with a trachomatous inflammation-follicular (TF) prevalence in 1-9-year-olds of 17.1% (95%CI 9.4-25.5), and a trichiasis prevalence in adults aged ≥15 years of 1.2% (95%CI 0.6-2.0). Five EUs, covering 13 woredas (Berahle, Aba'ala, Dupti, Kurri, Elidihare, Ayesayeta, Afamboo, Bure Mudaitu, Gewane, Amibara, Dulecho, Dalolo, and Konebo), had TF prevalences in children of 5-9.9% and need one round of azithromycin mass treatment and implementation of the F and E components of SAFE before re-survey; three of these EUs had trichiasis prevalences in adults ≥0.2%. The final EU (Mile, Ada'ar) had a sub-threshold TF prevalence and a trichiasis prevalence in adults just >0.2%. CONCLUSION: Trachoma is a public health problem in Afar, and implementation of the SAFE strategy is required

    Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

    Get PDF
    BACKGROUND: Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1(R)) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R) mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention
    • …
    corecore