270 research outputs found

    Fabrication of micro-structures for optically driven micromachines using two-photon photopolymerization of UV curing resins

    Full text link
    Two-photon photopolymerization of UV curing resins is an attractive method for the fabrication of microscopic transparent objects with size in the tens of micrometers range. We have been using this method to produce three-dimensional structures for optical micromanipulation, in an optical system based on a femtosecond laser. By carefully adjusting the laser power and the exposure time we were able to create micro-objects with well-defined 3D features and with resolution below the diffraction limit of light. We discuss the performance and capabilities of a microfabrication system, with some examples of its products.Comment: 12 pages, 10 figure

    The Ursinus Weekly, June 4, 1917

    Get PDF
    Wonderful concert by Music Society • Seniors entertained by alumni club • Baccalaureate theme brotherhood of man • Unveiling of portraits impressive ceremony • Senior programs in literary societies • Real Christian work for next year • Successful season for college quartet • Pupils\u27 recital • A letter from Fort Niagarahttps://digitalcommons.ursinus.edu/weekly/2596/thumbnail.jp

    MicroRNA Expression in a Readily Accessible Common Hepatic Artery Lymph Node Predicts Time to Pancreatic Cancer Recurrence Postresection

    Get PDF
    Lymph node involvement in pancreatic adenocarcinoma (PAC) predicts postresection survival, but early lymph node metastasis detection is not easily accomplished. We assessed a panel of microRNAs (miRNAs) in a common hepatic artery lymph node (station 8) that is readily accessible during pancreatoduodenectomy (PD) to determine if increased miRNA levels correlate with postresection recurrence. Station 8 lymph nodes overlying the common hepatic artery collected during PD were assayed for miRNA-10b, miRNA-30c, miRNA-21, and miRNA-155 and cytokeratin-19 (CK19), an epithelial cell marker, using quantitative PCR. Expression was correlated with disease recurrence, recurrence-free survival (RFS), and overall survival (OS). Station 8 lymph nodes from 37 patients (30 periampullary carcinomas (PCs), 2 chronic pancreatitis, 5 other cancers) exhibited increased miRNA-10b levels in 14/30 PCs, and in 10 of these 14 patients, cancer recurred during the study period (2012–2015). High miRNA-10b was also associated with shorter RFS (42.5 vs. 92.4 weeks, p < 0.05) but not OS, whereas miRNA-30c, miRNA-21, and miRNA-155 levels and CK19 mRNA levels in station 8 nodes were variable and did not correlate with RFS or OS. We conclude that elevated miRNA-10b levels in station 8 lymph nodes could be utilized to assess risk for early disease progression in patients with periampullary tumors

    Anisotropic optical and magnetic response in self-assembled TiN-CoFe\u3csub\u3e2\u3c/sub\u3e nanocomposites

    Get PDF
    Transition metal nitrides (e.g., TiN) have shown tremendous promise in optical metamaterials for nanophotonic devices due to their plasmonic properties comparable to noble metals and superior high temperature stability. Vertically aligned nanocomposites (VANs) offer a great platform for combining two dissimilar functional materials with a one-step deposition technique toward multifunctionality integration and strong structural/property anisotropy. Here we report a two-phase nanocomposite design combining ferromagnetic CoFe2 nanosheets in the plasmonic TiN matrix as a new hybrid plasmonic metamaterial. The hybrid metamaterials exhibit obvious anisotropic optical and magnetic responses, as well as a pronounced magneto-optical coupling response evidenced by MOKE measurement, owing to the novel vertically aligned structure. This work demonstrates a new TiN-based metamaterial with anisotropic properties and multi-functionality towards optical switchable spintronics, magnetic sensors and integrated optic

    The Lantern Vol. 15, No. 3, Summer 1947

    Get PDF
    • On Sleeping at Lectures • So You Want Security • Mild and Bitters • The Child April • Helgoland • His Majesty, Tabby • January Interval • A Friend or Two • Wish in June • The Search • Jack of 54 and Davey Jones • Song of the Earth • Donald Gay Baker • The Dilemma by the Horns • Psychologyhttps://digitalcommons.ursinus.edu/lantern/1042/thumbnail.jp

    Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.

    Get PDF
    Background: Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes. Objectives: This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments. Method: Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated. Results: QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement between palpation and QF in identifying hypo-mobile segments (Kappa 0.04-0.06). Conclusions: This study found no differences in cervical sagittal IV-RoM between patients with non-specific neck pain and matched controls. There was a modest dose-response relationship between the number of manipulations given and number of levels increasing IV-RoM - providing evidence that neck manipulation has a mechanical effect at segmental levels. However, patient-reported outcomes were not related to this

    BKV Agnoprotein Interacts with α-Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein, and Negatively Influences Transport of VSVG-EGFP

    Get PDF
    Background: The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings: As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them a-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and a-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and a-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with a-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions: We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with a-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter

    Virtual Reality and 3D Imaging to Support Collaborative Decision Making for Adaptation of Long-Life Assets

    Get PDF
    European companies of today are involved in many stages of the product life cycle. There is a trend towards the view of their business as a complex industrial product-service system (IPSS). This trend shifts the business focus from a traditional product oriented one to a function oriented one. With the function in focus, the seller shares the responsibility of for example maintenance of the product with the buyer. As such IPSS has been praised for supporting sustainable practices. This shift in focus also promotes longevity of products and promotes life extending work on the products such as adaptation and upgrades. Staying competitive requires continuous improvement of manufacturing and services to make them more flexible and adaptive to external changes. The adaptation itself needs to be performed efficiently without disrupting ongoing operations and needs to result in an acceptable after state. Virtual planning models are a key technology to enable planning and design of the future operations in parallel with ongoing operations. This chapter presents an approach to combine digitalization and virtual reality (VR) technologies to create the next generation of virtual planning environments. Through incorporating digitalization techniques such as 3D imaging, the models will reach a new level of fidelity and realism which in turn makes them accessible to a broader group of users and stakeholders. Increased accessibility facilitates a collaborative decision making process that invites and includes cross functional teams. Through such involvement, a broader range of experts, their skills, operational and tacit knowledge can be leveraged towards better planning of the upgrade process. This promises to shorte
    corecore