240 research outputs found

    Comparing call-based versus subunit-based methods for categorizing Norwegian killer whale, Orcinus orca, vocalizations

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Animal Behaviour 81 (2011): 377-386, doi:10.1016/j.anbehav.2010.09.020.Students of animal communication face significant challenges when deciding how to categorise calls into subunits, calls, and call series. Here, we use algorithms designed to parse human speech to test different approaches for categorising calls of killer whales. Killer whale vocalisations have traditionally been categorised by humans into discrete call types. These calls often contain internal spectral shifts, periods of silence, and synchronously produced low and high frequency components, suggesting that they may be composed of subunits. We describe and compare three different approaches for modelling Norwegian killer whale calls. The first method considered the whole call as the basic unit of analysis. Inspired by human speech processing techniques, the second and third methods represented the calls in terms of subunits. Subunits may provide a more parsimonious approach to modelling the vocal stream since (1) there were fewer subunits than call types; (2) nearly 75% of all call types shared at least one subunit. We show that contour traces from stereotyped Norwegian killer whale calls yielded similar automatic classification performance using either whole calls or subunits. We also demonstrate that subunits derived from Norwegian stereotyped calls were detected in some Norwegian variable (non-stereotyped) calls as well as the stereotyped calls of other killer whale populations. Further work is required to test whether killer whales use subunits to generate and categorize their vocal repertoire.The undergraduate students were supported by the Massachusetts Institute of Technology Undergraduate Research Opportunities Program office and the Ocean Life Institute (OLI) at the Woods Hole Oceanographic Institution (WHOI). Field work was financed by the OLI, National Geographic Society and WWF Sweden. A. D. Shapiro was funded by a National Defense Science and Engineering Graduate Fellowship and the WHOI Academic Programs Office

    Humpback whales interfering when mammal-eating killer whales attack other species: mobbing behavior and interspecific altruism?

    Get PDF
    Humpback whales (Megaptera novaeangliae) are known to interfere with attacking killer whales (Orcinus orca). To investigate why, we reviewed accounts of 115 interactions between them. Humpbacks initiated the majority of interactions (57% vs. 43%; n=72), although the killer whales were almost exclusively mammal-eating forms (MEKWs, 95%) vs. fish-eaters (5%; n=108). When MEKWs approached humpbacks (n=27), they attacked 85% of the time and targeted only calves. When humpbacks approached killer whales (n=41), 93% were MEKWs, and >87% of them were attacking or feeding on prey at the time. When humpbacks interacted with attacking MEKWs, 11% of the prey were humpbacks and 89% comprised 10 other species, including 3 cetaceans, 6 pinnipeds, and 1 teleost fish. Approaching humpbacks often harassed attacking MEKWs (>55% of 56 interactions), regardless of the prey species, which we argue was mobbing behavior. Humpback mobbing sometimes allowed MEKW prey, including nonhumpbacks, to escape. We suggest that humpbacks initially responded to vocalizations of attacking MEKWs without knowing the prey species targeted. Although reciprocity or kin selection might explain communal defense of conspecific calves, there was no apparent benefit to humpbacks continuing to interfere when other species were being attacked. Interspecific altruism, even if unintentional, could not be ruled out

    Low-frequency signals produced by Northeast Atlantic killer whales (Orcinus orca)

    Get PDF
    Killer whale acoustic behavior has been extensively investigated, however most studies have focused on pulsed calls and whistles. This study reports the production of low-frequency signals by killer whales at frequencies below 300 Hz. Recordings of killer whales were made in Iceland and Norway when whales were observed feeding on herring, and no other cetacean species were nearby. Low-frequency sounds were identified in Iceland and ranged in duration between 0.14 and 2.77 seconds and in frequency between 50 and 270 Hz, well below the previously reported lower limit for killer whale tonal sounds of 500 Hz. LFS appeared to be produced close in time to tail slaps, indicative of feeding attempts, suggesting that these sounds may be related to a feeding context. However, their precise function is unknown and they could be the by-product of a non-vocal behavior, rather than a vocal signal deliberately produced by the whales. Although killer whales in Norway exhibit similar feeding behavior, this sound was not detected in recordings from Norway. This study suggests that, like other delphinids, killer whales also produce low-frequency sounds but further studies will be required to understand whether similar sounds exist in other killer whale populations

    Physiology of short-term verbal memory

    Full text link
    These studies document a series of brain events accompanying short-term memory functions. For auditory verbal material the sequence involves at least two different sites within auditory cortex subserving sensory and cognitive processes of memorization. During the scanning of the short-term store structures within the medial temporal lobes, presumably the hippocampus, are active. There is an inconsistency between these results and the clinical observations of the need for an intact dominant parietal lobe for auditory short-term memory to function normally. Magnetic recordings showed no focal dipolar source of activity in the parietal lobe during any aspect of auditory short-term memory. The discrepancy could be accounted for by considering the parietal lobe lesion as "disconnecting" the lateral temporal cortex from the deep medial hippocampal structures thereby impeding auditory short-term functions (Geschwind, 1965). These studies show that the physiological analysis of brain events in the msec range can provide information about relatively complex cognitive processes underlying short-term memory. The magnetic and electrical recording methods provide a noninvasive way to study human brain functions involved in cognition that can then be correlated with behavioral measures of specific cognitive activities

    Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease

    Get PDF
    ABSTRACT: Impairments of action language have been documented in early stage Parkinson’s disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxelbased morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies

    Beaked whales respond to simulated and actual navy sonar

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain declaration. The definitive version was published in PLoS One 6 (2011): e17009, doi:10.1371/journal.pone.0017009.Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.The research reported here was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014-07-10988, N00014-07-11023, N00014-08-10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI-1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org)

    Motor-Cortical Interaction in Gilles de la Tourette Syndrome

    Get PDF
    BACKGROUND: In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS

    Neural antecedents of self-initiated actions in secondary motor cortex

    Get PDF
    The neural origins of spontaneous or self-initiated actions are not well understood and their interpretation is controversial. To address these issues, we used a task in which rats decide when to abort waiting for a delayed tone. We recorded neurons in the secondary motor cortex (M2) and interpreted our findings in light of an integration-to-bound decision model. A first population of M2 neurons ramped to a constant threshold at rates proportional to waiting time, strongly resembling integrator output. A second population, which we propose provide input to the integrator, fired in sequences and showed trial-to-trial rate fluctuations correlated with waiting times. An integration model fit to these data also quantitatively predicted the observed inter-neuronal correlations. Together, these results reinforce the generality of the integration-to-bound model of decision-making. These models identify the initial intention to act as the moment of threshold crossing while explaining how antecedent subthreshold neural activity can influence an action without implying a decision.info:eu-repo/semantics/publishedVersio

    Applauding with Closed Hands: Neural Signature of Action-Sentence Compatibility Effects

    Get PDF
    BACKGROUND: Behavioral studies have provided evidence for an action-sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes. METHODOLOGY/PRINCIPAL FINDINGS: Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition. CONCLUSIONS/SIGNIFICANCE: The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction
    • …
    corecore