5 research outputs found

    Crystallographic characterization of a BFMO layer grown on STO through HRTEM imaging and simulation

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2019, Tutores: Francesca Peiró Martínez, Catalina Coll BenejamBi(Fe0.5Mn0.5)O3 is a multiferroic material with electric and magnetic properties of great interest for potential spintronic applications. To understand what triggers its peculiar behaviour it is essential to know its structure, and for that, TEM is the ideal tool for analysis at the nanoscale. The aim is to study a thin film of BFMO grown on a STO substrate through the analysis of high resolution transmission electron microscopy (HREM) images and the use of HREM simulations from theoretical atomistic models built also in this project. The results show that this method can lead to useful results in structure determination of a materia

    LSD-induced increase of Ising temperature and algorithmic complexity of brain dynamics

    Get PDF
    A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create “archetype” Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10−5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity—especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state

    Macroscopic Quantities of Collective Brain Activity during Wakefulness and Anesthesia

    No full text
    International audienceThe study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. We showed that the coupling between each brain region and the rest of the cortex provides an efficient statistic to classify the two brain states. Based on this and other statistics, we estimated maximum entropy models to derive collective, macroscopic properties that quantify the system's capabilities to produce work, to contain information, and to transmit it, which were all maximized in the awake state. The differences in these properties were consistent with a phase transition from critical dynamics in the awake state to supercritical dynamics in the anesthetized state. Moreover, information-theoretic measures identified those parameters that impacted the most the network dynamics. We found that changes in the state of consciousness primarily depended on changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network

    Macroscopic quantities of collective brain activity during wakefulness and anesthesia

    No full text
    The study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. We showed that the coupling between each brain region and the rest of the cortex provides an efficient statistic to classify the two brain states. Based on this and other statistics, we estimated maximum entropy models to derive collective, macroscopic properties that quantify the system’s capabilities to produce work, to contain information, and to transmit it, which were all maximized in the awake state. The differences in these properties were consistent with a phase transition from critical dynamics in the awake state to supercritical dynamics in the anesthetized state. Moreover, information-theoretic measures identified those parameters that impacted the most the network dynamics. We found that changes in the state of consciousness primarily depended on changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network.A.P.A., B.J., and G.D. received funding from the FLAG-ERA JTC (PCI2018-092891). G.D. acknowledges funding from the European Union’s Horizon 2020 FET Flagship Human Brain Project under Grant Agreement 785907 HBP SGA1, SGA2, and SGA3, the Spanish Ministry Research Project PSI2016-75688-P (AEI/FEDER), the Catalan Research Group Support 2017 SGR 1545, and AWAKENING (PID2019-105772GB-I00, AEI FEDER EU) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI) and European Regional Development Funds (FEDER). M.L.K. is supported by the ERC Consolidator Grant: CAREGIVING (n. 615539), Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing funded by the Pettit and Carlsberg Foundations. BJ received funding from Fondation Bettencourt-Schueller, Université Paris-Saclay (UVSQ), Fondation de France, Collège de France and from INSERM. CMS was supported by Comisión Nacional de Investigación Ciencia y Tecnología (CONICYT, currently ANID) through Programa Formacion de Capital Avanzado (PFCHA), Doctoral scholarship Becas Chile: CONICYT PFCHA/DOCTORADO BECAS CHILE/2016—72170507
    corecore