38 research outputs found
Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice.
The anatomical routes for the clearance of cerebrospinal fluid (CSF) remain incompletely understood. However, recent evidence has given strong support for routes leading to lymphatic vessels. A current debate centers upon the routes through which CSF can access lymphatics, with evidence emerging for either direct routes to meningeal lymphatics or along cranial nerves to reach lymphatics outside the skull. Here, a method was established to infuse contrast agent into the ventricles using indwelling cannulae during imaging of mice at 2 and 12 months of age by magnetic resonance imaging. As expected, a significant decline in overall CSF turnover was found with aging. Quantifications demonstrated that the bulk of the contrast agent flowed from the ventricles to the subarachnoid space in the basal cisterns. Comparatively little contrast agent signal was found at the dorsal aspect of the skull. The imaging dynamics from the two cohorts revealed that the contrast agent cleared from the cranium through the cribriform plate to the nasopharyngeal lymphatics. On decalcified sections, we confirmed that fluorescentlylabeled ovalbumin drains through the cribriform plate and can be found within lymphatics surrounding the nasopharynx. In conclusion, routes leading to nasopharyngeal lymphatics appear to be a major efflux pathway for cranial CSF
IKKbeta Deficiency in Myeloid Cells Ameliorates Alzheimer's Disease-Related Symptoms and Pathology
Alzheimer's disease (AD) is characterized by extracellular amyloid-beta (Abeta) deposits and microglia-dominated inflammatory activation. Innate immune signaling controls microglial inflammatory activities and Abeta clearance. However, studies examining innate immunity in Abeta pathology and neuronal degeneration have produced conflicting results. In this study, we investigated the pathogenic role of innate immunity in AD by ablating a key signaling molecule, IKKbeta, specifically in the myeloid cells of TgCRND8 APP-transgenic mice. Deficiency of IKKbeta in myeloid cells, especially microglia, simultaneously reduced inflammatory activation and Abeta load in the brain and these effects were associated with reduction of cognitive deficits and preservation of synaptic structure proteins. IKKbeta deficiency enhanced microglial recruitment to Abeta deposits and facilitated Abeta internalization, perhaps by inhibiting TGF-beta-SMAD2/3 signaling, but did not affect Abeta production and efflux. Therefore, inhibition of IKKbeta signaling in myeloid cells improves cognitive functions in AD mice by reducing inflammatory activation and enhancing Abeta clearance. These results contribute to a better understanding of AD pathogenesis and could offer a new therapeutic option for delaying AD progression
p38α-MAPK-deficient myeloid cells ameliorate symptoms and pathology of APP-transgenic Alzheimer's disease mice
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid-β peptides (Aβ) and microglia-dominated inflammatory activation in the brain. p38α-MAPK is activated in both neurons and microglia. How p38α-MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α-MAPK in all myeloid cells or specifically in microglia of APP-transgenic mice, and examined animals for AD-associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α-MAPK-deficient myeloid cells were more effective than p38α-MAPK-deficient microglia in reducing cerebral Aβ and neuronal impairment in APP-transgenic mice. Deficiency of p38α-MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α-MAPK-deficient myeloid cells reduced IL-17a-expressing CD4-positive lymphocytes in 9 but not 4-month-old APP-transgenic mice. By cross-breeding APP-transgenic mice with Il-17a-knockout mice, we observed that IL-17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9-month-old myeloid p38α-MAPK-deficient AD mice. Thus, p38α-MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL-17a-expressing lymphocytes may partially mediate the pathogenic role of p38α-MAPK in peripheral myeloid cells. Our study supports p38α-MAPK as a therapeutic target for AD patients
Repeatability of alkaline inorganic phosphate quantification in the skeletal muscle using 31P-magnetic resonance spectroscopy at 3 T
The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (31P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pialk) using with 31P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting 31P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. 31P-MRS data were acquired with a 31P/-proton (1H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pialk demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pialk quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pialk measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pialk in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity
Selective and Wash‐Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single‐Molecule Imaging of μ‐Opioid Receptor Dimerization
μ‐Opioid receptors (μ‐ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ‐ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ‐OR antagonist E‐p‐nitrocinnamoylamino‐dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single‐molecule imaging of μ‐ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ‐ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ‐ORs interact with each other to form short‐lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ‐OR pharmacology at single‐molecule level
Selective and wash‐resistant fluorescent dihydrocodeinone derivatives allow single‐molecule imaging of μ‐opioid receptor dimerization
μ‐Opioid receptors (μ‐ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ‐ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ‐OR antagonist E‐p‐nitrocinnamoylamino‐dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single‐molecule imaging of μ‐ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ‐ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ‐ORs interact with each other to form short‐lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ‐OR pharmacology at single‐molecule level
Recommended from our members
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
Recommended from our members
Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
The original version of this article unfortunately contained a mistake
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels.
The pathways of circulation and clearance of cerebrospinal fluid (CSF) in the spine have yet to be elucidated. We have recently shown with dynamic in vivo imaging that routes of outflow of CSF in mice occur along cranial nerves to extracranial lymphatic vessels. Here, we use near-infrared and magnetic resonance imaging to demonstrate the flow of CSF tracers within the spinal column and reveal the major spinal pathways for outflow to lymphatic vessels in mice. We found that after intraventricular injection, a spread of CSF tracers occurs within both the central canal and the spinal subarachnoid space toward the caudal end of the spine. Outflow of CSF tracers from the spinal subarachnoid space occurred predominantly from intravertebral regions of the sacral spine to lymphatic vessels, leading to sacral and iliac LNs. Clearance of CSF from the spine to lymphatic vessels may have significance for many conditions, including multiple sclerosis and spinal cord injury