146 research outputs found

    Evolution of the Great Barrier Reef over the last 130 ka; a multifaceted approach, integrating palaeo ecological, palaeo environmental and chronological data from cores.

    Get PDF
    Over the last few decades there has been a significant decline in the health and diversity of modern reefs globally. High resolution millennial scale records of coral reef response to environmental per- turbations are needed to determine if this decline is the result of recent anthropogenic activity, or represents part of a natural longer-term geological cycle. Hence, a range of multi-proxy palaeode- positional indicators (coralgal assemblages, sedimentary facies and associated biota) were integrated with chronologic data, to provide a greater understanding of the geologic and ecologic factors which controlled reef development during the Holocene and Last Interglacial (LIG). This constitutes the most comprehensive regional chronologic and ecologic investigation of mid-outer platform reefs, in the Great Barrier Reef (GBR) over the past 130 ka. Fifteen pre-existing long cores (10 ka) geological timescales. Results suggest that the palaeoenvironments during the initial turn-on phases of the two interglacial intervals (Holocene and LIG) were signi - cantly di erent. However, similar composition of ultimate shallow-water coralgal assemblages and slow reef aggradation rates following stabilisation of sea level, suggest both the LIG and Holocene reefs developed in a similar way as they approached mean sea level. These results further suggest that if rapid sea level rise were to occur in the future, similar to that at the onset of the LIG and in combination with other environmental stresses (e.g. warmer SST, increased turbidity, ocean acidi - cation, increased bleaching, excess nutrient runo ), the GBR may experience a near drowning event analogous to that experienced during the LIG

    SPOTKANIE PRZESZƁOƚCI Z PRZYSZƁOƚCIĄ, CZYLI MUZEUM JAKO BUDYNEK TYPU SMART

    Get PDF
    This article presents the characteristics of Smart Building technology in the context of their implementation in a museum building. The role of integrated building automation and a control system in an intelligent museum building, its functions, and the issue of maximizing energy efficiency, while ensuring the optimal conditions for preservation of relics, as well as people comfort were presented.W artykule przedstawiono charakterystykę technologii Smart Building w kontekƛcie zastosowania w budynku muzeum. Zaprezentowano rolę zintegrowanego systemu sterowania i automatyzacji w inteligentnym budynku muzealnym, jego funkcje, a takĆŒe problematykę maksymalizacji efektywnoƛć energetycznej, przy jednoczesnym zapewnieniu optymalnych warunkĂłw konserwacji zabytkĂłw oraz przebywania ludzi

    BENCHMARKING W ELEKTROENERGETYCZNYCH SYSTEMACH DYSTRYBUCYJNYCH

    Get PDF
    The article presents an analysis of the reliability indicators used in the electric power systems structures of Polish and Europe, in the context of benchmarking at the level of functional and operational, the aim of which is to identify optimal methods for assessing and evaluating the possibility of indicating the reference values. In addition, noted the impact of electricity grid structure on the value of the currently used indicators of reliability.ArtykuƂ prezentuje analizę stosowanych wskaĆșnikĂłw niezawodnoƛci zasilania w strukturach elektroenergetycznych Polski i Europy, w kontekƛcie benchmarkingu na poziomie funkcjonalnym i operacyjnym, ktĂłrej celem jest wskazanie optymalnych metod oceny i ocena moĆŒliwoƛci wskazania wartoƛci referencyjnych. Ponadto wskazano wpƂyw struktury sieciowej na wartoƛci aktualnie stosowanych wskaĆșnikĂłw niezawodnoƛci zasilania

    New Insights from Seafloor Mapping of a Hawaiian Marine Monument

    Get PDF
    On 15 June 2006, when U.S. President George W. Bush signed the proclamation creating the Papahānaumokuākea Marine National Monument (PMNM), he probably wasn’t thinking about underwater morphology. To fully understand the coral reefs and marine ecosystems that the monument was created to protect, however, scientists need to have a detailed picture of the seafloor features, home to corals and other species, as well as the geologic history of the area. Thanks to a recent, multi-institution expedition, such a seafloor features that will not only inform conservation efforts but also enable geologists and geophysicists to revise their understanding of Hawaii’s complex geologic past. Specifically, data should help scientists answer fundamental questions about the area’s regional geology. For instance, which seamounts were truly formed because of Hawaiian hotspot volcanism, and which seamounts were not

    Lavoro totale

    Get PDF
    Le componenti culturali, creative e relazionali investono in modo crescente gli ambiti dell’innovazione sociale e dell’auto-imprenditorialitĂ  e come tali vengono ampiamente studiate, ma Ăš solo spostando l’attenzione dalle varietĂ  del lavoro cognitivo alle forze che lo determinano che possiamo tentare di cogliere e interpretare la dinamica del cambiamento in atto. Apprendimento continuo, autonomia, responsabilitĂ , flessibilitĂ , individualizzazione, svalorizzazione e cooperazione diventano cosĂŹ traiettorie di sviluppo del lavoro e non contingenze di alcuni settori o fenomeni. Analizzare le strutture che fondano l’attuale condizione del lavoro cognitivo nei campi dell’innovazione sociale e dell’auto-imprenditorialitĂ  puĂČ allora aiutarci a comprendere le forze sottostanti ai processi di riorganizzazione del lavoro in atto. L’urgenza e l’originalitĂ  di questo libro di Maurizio Busacca consistono nell’analisi di queste strutture, cercando di rintracciare ed evidenziare contraddizioni e distorsioni prima di accettare acriticamente e astoricamente le retoriche piĂč diffuse e dirompenti, e indagando la struttura di fondo del lavoro cognitivo, nella sua dinamica storica e esistenziale, attraverso il concetto di Lavorototale-ImproduttivitĂ malata. Il lavoro totale si profila come una delle forme di vita economica e sociale, ma anche di patologia individuale, che giĂ  contraddistingue nel presente il lavoro cognitivo e minaccia di estendersi a settori sempre piĂč ampi nell’immediato futuro. L’improduttivitĂ  malata Ăš il suo risvolto, o il fratello gemello. Questo libro di Maurizio Busacca ne indaga i meccanismi, anche alla luce del magistero di Franco Basaglia, e mentre ne denuncia i pericoli cerca di individuare possibili alternative o vie d’uscita

    Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are described as the main reef framework builders, often associated with crustose coralline algae. We used underwater cores to investigate Late Holocene reef growth and characterise the main framework builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef, our results show a complex framework building system dominated by bryozoans. Bryozoans were major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively. Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs. Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’ dominance over photoautotrophs and mixotrophs, we propose that a combination of historical factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/CiĂȘncias do Mar, and ANP/Brasoil for long term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation International for providing and authorizing the use of the IKONOS image. JMW and JCB are International Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. ZĂĄ Cajueiro provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling operations. This is a contribution from the Rede Abrolhos (abrolhos.org)

    Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs

    Full text link
    [EN] In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)(2)] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)(2)] concentration in three different polymeric matrices based on the PBI structure, poly(2,2 '-(m-phenylene)-5,5 '-bibenzimidazole) (PBI-1), poly[2,2 '-(p-oxydiphenylene)-5,5 '-bibenzimidazole] (PBI-2) and poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm(-1)above 140 degrees C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.This work was financially supported by the Ministerio de Economia y Competitividad (MINECO) under project ENE/2015-69203-R and by Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the postdoctoral grant to J. O. The technical support of Servei de Microscpia Electrnica at Universitat Politecnica de Valencia and Servei Central d'Instrumentacio Cientifica at Universitat Jaume I is gratefully acknowledged. The authors thanks Prof. Santiago V. Luis (from Universitat Jaume I) and Dr Isabel Fuentes, Prof. Francesc Teixidor and Prof. Clara Vinas (from Instituto de Materiales de Barcelona, CSIC), for supplying the H[COSANE] compound.Olvera-Mancilla, J.; Escorihuela, J.; Alexandrova, L.; Andrio, A.; Garcia-Bernabe, A.; Del Castillo, LF.; Compañ Moreno, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter. 16(32):7624-7635. https://doi.org/10.1039/d0sm00743aS762476351632https://earthsky.org/earth/atmospheric-co2-record-high-may-2019Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030Savage, J., Tse, Y.-L. S., & Voth, G. A. (2014). Proton Transport Mechanism of Perfluorosulfonic Acid Membranes. The Journal of Physical Chemistry C, 118(31), 17436-17445. doi:10.1021/jp504714dMauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977kHickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711aKongstein, O. E., Berning, T., BĂžrresen, B., Seland, F., & Tunold, R. (2007). Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy, 32(4), 418-422. doi:10.1016/j.energy.2006.07.009Pant, B., Park, M., & Park, S.-J. (2019). One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers, 11(7), 1185. doi:10.3390/polym11071185Suryani, Chang, Y.-N., Lai, J.-Y., & Liu, Y.-L. (2012). Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. Journal of Membrane Science, 403-404, 1-7. doi:10.1016/j.memsci.2012.01.043Escorihuela, J., Sahuquillo, Ó., GarcĂ­a-BernabĂ©, A., GimĂ©nez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775Escorihuela, J., GarcĂ­a-BernabĂ©, A., Montero, Á., Sahuquillo, Ó., GimĂ©nez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732Compañ, V., Escorihuela, J., Olvera, J., GarcĂ­a-BernabĂ©, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666Fuentes, I., Andrio, A., GarcĂ­a-BernabĂ©, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372fDechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109Chung, T.-S., Jiang, L. Y., Li, Y., & Kulprathipanja, S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507. doi:10.1016/j.progpolymsci.2007.01.008Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., 
 Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., 
 KĂŠr, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024Asensio, J. A., SĂĄnchez, E. M., & GĂłmez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650hWang, Y., Shi, Z., Fang, J., Xu, H., & Yin, J. (2011). Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method. Carbon, 49(4), 1199-1207. doi:10.1016/j.carbon.2010.11.036Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467NĂșñez, R., TarrĂ©s, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198Pepiol, A., Teixidor, F., SillanpÀÀ, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668GonzĂĄlez-Cardoso, P., Stoica, A.-I., FarrĂ s, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558TarrĂ©s, M., Viñas, C., Cioran, A. M., HĂ€nninen, M. M., SillanpÀÀ, R., & Teixidor, F. (2014). Towards Multifunctional Materials Incorporating Elastomers and Reversible Redox-Active Fragments. Chemistry - A European Journal, 20(48), 15808-15815. doi:10.1002/chem.201403424TarrĂ©s, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464fFuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526bEaton, P. E., Carlson, G. R., & Lee, J. T. (1973). Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. The Journal of Organic Chemistry, 38(23), 4071-4073. doi:10.1021/jo00987a028Musto, P., Karasz, F. E., & MacKnight, W. J. (1989). Hydrogen bonding in polybenzimidazole/polyimide systems: a Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes. Polymer, 30(6), 1012-1021. doi:10.1016/0032-3861(89)90072-4Xu, H., Chen, K., Guo, X., Fang, J., & Yin, J. (2007). Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 48(19), 5556-5564. doi:10.1016/j.polymer.2007.07.029Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403aChuang, S.-W., & Hsu, S. L.-C. (2006). Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. Journal of Polymer Science Part A: Polymer Chemistry, 44(15), 4508-4513. doi:10.1002/pola.21555Chuang, S.-W., Hsu, S. L.-C., & Hsu, C.-L. (2007). Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. Journal of Power Sources, 168(1), 172-177. doi:10.1016/j.jpowsour.2007.03.021Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., 
 Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337bErgun, D., Devrim, Y., Bac, N., & Eroglu, I. (2012). Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. Journal of Applied Polymer Science, 124(S1), E267-E277. doi:10.1002/app.36507Yuan, S., Yan, G., Xia, Z., Guo, X., Fang, J., & Yang, X. (2013). Preparation and properties of covalently cross-linked sulfonated poly(sulfide sulfone)/polybenzimidazole blend membranes for fuel cell applications. High Performance Polymers, 26(2), 212-222. doi:10.1177/0954008313507589Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159Gomadam, P. M., & Weidner, J. W. (2005). Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. International Journal of Energy Research, 29(12), 1133-1151. doi:10.1002/er.1144Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301Leys, J., WĂŒbbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., 
 Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique AppliquĂ©e, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-wEscorihuela, J., GarcĂ­a-BernabĂ©, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374Villa, D. C., Angioni, S., Barco, S. D., Mustarelli, P., & Quartarone, E. (2014). Polysulfonated Fluoro-oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4Doping Levels. Advanced Energy Materials, 4(11), 1301949. doi:10.1002/aenm.201301949Ma, Y.-L., Wainright, J. S., Litt, M. H., & Savinell, R. F. (2004). Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 151(1), A8. doi:10.1149/1.1630037Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003Kumar, S. R., Wang, J.-J., Wu, Y.-S., Yang, C.-C., & Lue, S. J. (2020). Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources, 445, 227293. doi:10.1016/j.jpowsour.2019.227293Guerrero Moreno, N., Gervasio, D., GodĂ­nez GarcĂ­a, A., & PĂ©rez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., & He, R. (2017). Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. Macromolecular Chemistry and Physics, 218(10), 1700009. doi:10.1002/macp.201700009Satheesh Kumar, B., Sana, B., Mathew, D., Unnikrishnan, G., Jana, T., & Santhosh Kumar, K. S. (2018). Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low content of amine-functionalized nanoparticles. Polymer, 145, 434-446. doi:10.1016/j.polymer.2018.04.081Singha, S., & Jana, T. (2014). Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Applied Materials & Interfaces, 6(23), 21286-21296. doi:10.1021/am506260jKannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265jXu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159kMamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050Fuentes, I., Mostazo‐LĂłpez, M. J., Kelemen, Z., Compañ, V., Andrio, A., MorallĂłn, E., 
 Teixidor, F. (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry – A European Journal, 25(63), 14308-14319. doi:10.1002/chem.201902708Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., 
 Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820aWeingĂ€rtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201Pu, H., Lou, L., Guan, Y., Chang, Z., & Wan, D. (2012). Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. Journal of Membrane Science, 415-416, 496-503. doi:10.1016/j.memsci.2012.05.036SĂžrensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235SĂžrensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., 
 Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085Valverde, D., Garcia-BernabĂ©, A., Andrio, A., GarcĂ­a-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903kLee, S. H., & Rasaiah, J. C. (2011). Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water. The Journal of Chemical Physics, 135(12), 124505. doi:10.1063/1.3632990Liang, T., Shin, Y. K., Cheng, Y.-T., Yilmaz, D. E., Vishnu, K. G., Verners, O., 
 van Duin, A. C. T. (2013). Reactive Potentials for Advanced Atomistic Simulations. Annual Review of Materials Research, 43(1), 109-129. doi:10.1146/annurev-matsci-071312-121610Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., 
 Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308Bennour, I., Cioran, A. M., Teixidor, F., & Viñas, C. (2019). 3,2,1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes. Green Chemistry, 21(8), 1925-1928. doi:10.1039/c8gc03943

    Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8

    Get PDF
    The durability of enzymes in harsh conditions can be enhanced by encapsulation within metal-organic frameworks (MOFs) via a process called biomimetic mineralisation. Herein we show that the surface charge and chemistry of a protein determines its ability to seed MOF growth. We demonstrate that chemical modification of amino acids on the protein surface is an effective method for systematically controlling biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Reaction of surface lysine residues with succinic (or acetic) anhydride facilitates biomimetic mineralisation by increasing the surface negative charge, whereas reaction of surface carboxylate moieties with ethylenediamine affords a more positively charged protein and hinders the process. Moreover, computational studies confirm that the surface electrostatic potential of a protein is a good indicator of its ability to induce biomimetic mineralisation. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralisation of proteins.Natasha K. Maddigan, Andrew Tarzia, David M. Huang, Christopher J. Sumby, Stephen G. Bell, Paolo Falcaro and Christian. J. Doona

    Rapid glaciation and a two-step sea-level plunge into The Last Glacial Maximum

    Get PDF
    The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth’s recent climate history1. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower2,3. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago4 and was followed by about 10,000 years of rapid deglaciation into the Holocene1. The masses of the melting polar ice sheets and the change in ocean volume, and hence in GMSL, are primary constraints for climate models constructed to describe the transition between the Last Glacial Maximum and the Holocene, and future changes; but the rate, timing and magnitude of this transition remain uncertain. Here we show that sea level at the shelf edge of the Great Barrier Reef dropped by around 20 metres between 21,900 and 20,500 years ago, to −118 metres relative to the modern level. Our findings are based on recovered and radiometrically dated fossil corals and coralline algae assemblages, and represent relative sea level at the Great Barrier Reef, rather than GMSL. Subsequently, relative sea level rose at a rate of about 3.5 millimetres per year for around 4,000 years. The rise is consistent with the warming previously observed at 19,000 years ago1,5, but we now show that it occurred just after the 20-metre drop in relative sea level and the related increase in global ice volumes. The detailed structure of our record is robust because the Great Barrier Reef is remote from former ice sheets and tectonic activity. Relative sea level can be influenced by Earth’s response to regional changes in ice and water loadings and may differ greatly from GMSL. Consequently, we used glacio-isostatic models to derive GMSL, and find that the Last Glacial Maximum culminated 20,500 years ago in a GMSL low of about −125 to −130 metres.Financial support of this research was provided by the JSPS KAKENHI (grant numbers JP26247085, JP15KK0151, JP16H06309 and JP17H01168), the Australian Research Council (grant number DP1094001), ANZIC, NERC grant NE/H014136/1 and Institut Polytechnique de Bordeaux
    • 

    corecore