8 research outputs found

    Defining an Adequate Sample of Earlywood Vessels for Retrospective Injury Detection in Diffuse-Porous Species

    Get PDF
    Vessels of broad-leaved trees have been analyzed to study how trees deal with various environmental factors. Cambial injury, in particular, has been reported to induce the formation of narrower conduits. Yet, little or no effort has been devoted to the elaboration of vessel sampling strategies for retrospective injury detection based on vessel lumen size reduction. To fill this methodological gap, four wounded individuals each of grey alder (Alnus incana (L.) Moench) and downy birch (Betula pubescens Ehrh.) were harvested in an avalanche path. Earlywood vessel lumina were measured and compared for each tree between the injury ring built during the growing season following wounding and the control ring laid down the previous year. Measurements were performed along a 10 mm wide radial strip, located directly next to the injury. Specifically, this study aimed at (i) investigating the intra-annual duration and local extension of vessel narrowing close to the wound margin and (ii) identifying an adequate sample of earlywood vessels (number and intra-ring location of cells) attesting to cambial injury. Based on the results of this study, we recommend analyzing at least 30 vessels in each ring. Within the 10 mm wide segment of the injury ring, wound-induced reduction in vessel lumen size did not fade with increasing radial and tangential distances, but we nevertheless advise favoring early earlywood vessels located closest to the injury. These findings, derived from two species widespread across subarctic, mountainous, and temperate regions, will assist retrospective injury detection in Alnus, Betula, and other diffuse-porous species as well as future related research on hydraulic implications after wounding

    An early Holocene age for the Vatn landslide (Skagafjörður, central northern Iceland): Insights into the role of postglacial landsliding on slope development

    No full text
    International audienceRecent research in northern Iceland has highlighted a significant period of rock slope instability during the early Holocene due to the combined effects of postglacial rebound, relative sea-level fall, and glacially oversteepened mountain slopes. Using the Vatn landslide (Skagafjörður, central northern Iceland) as an example, this paper focuses on this period and describes the sequence of events that led to landsliding. Geomorphic mapping, stratigraphical evidence, and both radiocarbon and tephra dating were applied. Collectively, the data acquired indicate that the landslide occurred between 11,400 and 10,790 cal. yr BP. However, while rock slope failure represents a significant disintegration of mountain slopes, this study suggests that large postglacial landslides might also play a role in arresting sediment transport from other hillslope processes rather than contributing large volumes of sediment

    Dendrochronological Records of Debris Flow and Avalanche Activity in a Mid-Mountain Forest Zone (Eastern Sudetes — Central Europe)

    No full text
    Abstract: Dendrochronological methods were used to determine the frequency of debris flow/avalanche events in a forest zone. A debris flow and avalanche track located in the Eastern Sudetes Mountains (Central Europe) was analysed. The length of the youngest debris flow/avalanche track is about 750 m. Three distinct sections of the debris flow can be identified along the longitudinal section: niche, gully and tongue. The dendrochronological study shows that trees started growing on the margins of the debris flow between 1908 and 1963. Hence, debris flow and/or avalanche events occurred on this slope at the turn of the 19th and 20th centuries. All trees collected from the tongue started growing between 1935 and 1964. However, a large debris flow event took place several years before, most probably during an extraordinary rainfall in June 1921. Following this event, several relatively large debris flows have occurred during the growing season, the strongest dendrochro-nologically confirmed events occurring in 1968, 1971-1972, 1991, 1997 and probably in 1977. Spring debris flow events induced by snow melt and/or avalanches have occurred in 1994 and 2004. The re-sults suggest that with favourable geological conditions, debris flows can occur very frequently within entirely forested slopes
    corecore