1,021 research outputs found

    Survey of Selected Organic Compounds in Aquifers of New York State Excluding Long Island

    Get PDF
    Samples from 56 wells at 49 sites in New York State, excluding Long Island, were analyzed by gas chromatography/mass spectrometry for the presence of organic compounds designated \u27 priority pollutants \u27 by the U.S. Environmental Protection Agency. Most samples were taken from public-supply wells tapping shallow, permeable aquifers, the most susceptible to contamination. Analytical sensitivity reported by the laboratory for most compounds was less than 1 microgram per liter, but contamination during collection, shipping, or laboratory processing required that concentrations be about 10 micrograms per liter before the presence of a compound could be confirmed. Only a small percentage of wells sampled in this study was found to be contaminated. Where contamination is present, it probably results from point sources such as landfills or dumps rather than from general sources such as atmospheric deposition or proximity to urban centers. Two sites, Brewster in Putnam County and Olean in Cattaraugus County, showed clear evidence of contamination. Two other sites, Corning in Steuben County and Fulton in Oswego County, showed evidence of possible contamination. (USGS

    The Placenta-A New Source of Bile Acids during Healthy Pregnancy? First Results of a Gene Expression Study in Humans and Mice.

    Get PDF
    Bile acids (BAs) are natural ligands for several receptors modulating cell activities. BAs are synthesized via the classic (neutral) and alternative (acidic) pathways. The classic pathway is initiated by CYP7A1/Cyp7a1, converting cholesterol to 7α-hydroxycholesterol, while the alternative pathway starts with hydroxylation of the cholesterol side chain, producing an oxysterol. In addition to originating from the liver, BAs are reported to be synthesized in the brain. We aimed at determining if the placenta potentially represents an extrahepatic source of BAs. Therefore, the mRNAs coding for selected enzymes involved in the hepatic BA synthesis machinery were screened in human term and CD1 mouse late gestation placentas from healthy pregnancies. Additionally, data from murine placenta and brain tissue were compared to determine whether the BA synthetic machinery is comparable in these organs. We found that CYP7A1, CYP46A1, and BAAT mRNAs are lacking in the human placenta, while corresponding homologs were detected in the murine placenta. Conversely, Cyp8b1 and Hsd17b1 mRNAs were undetected in the murine placenta, but these enzymes were found in the human placenta. CYP39A1/Cyp39a1 and cholesterol 25-hydroxylase (CH25H/Ch25h) mRNA expression were detected in the placentas of both species. When comparing murine placentas and brains, Cyp8b1 and Hsd17b1 mRNAs were only detected in the brain. We conclude that BA synthesis-related genes are placentally expressed in a species-specific manner. The potential placentally synthesized BAs could serve as endocrine and autocrine stimuli, which may play a role in fetoplacental growth and adaptation

    Diffusion of Immunoglobulin G in Shed Vaginal Epithelial Cells and in Cell-Free Regions of Human Cervicovaginal Mucus

    Get PDF
    Human cervicovaginal mucus (CVM) is a viscoelastic gel containing a complex mixture of mucins, shed epithelial cells, microbes and macromolecules, such as antibodies, that together serve as the first line of defense against invading pathogens. Here, to investigate the affinity between IgG and different mucus constituents, we used Fluorescence Recovery After Photobleaching (FRAP) to measure the diffusion of IgG in fresh, minimally modified CVM. We found that CVM exhibits substantial spatial variations that necessitate careful selection of the regions in which to perform FRAP. In portions of CVM devoid of cells, FRAP measurements using different IgG antibodies and labeling methods consistently demonstrate that both exogenous and endogenous IgG undergo rapid diffusion, almost as fast as in saline, in good agreement with the rapid diffusion of IgG in mid-cycle endocervical mucus that is largely devoid of cells. This rapid diffusion indicates the interactions between secreted mucins and IgG must be very weak and transient. IgG also accumulated in cellular debris and shed epithelial cells that had become permeable to IgG, which may allow shed epithelial cells to serve as reservoirs of secreted IgG. Interestingly, in contrast to cell-free regions of CVM, the diffusion of cell-associated IgG was markedly slowed, suggesting greater affinity between IgG and cellular constituents. Our findings contribute to an improved understanding of the role of IgG in mucosal protection against infectious diseases, and may also provide a framework for using FRAP to study molecular interactions in mucus and other complex biological environments

    Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    Get PDF
    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG

    Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge

    Get PDF
    Author Posting. © Nature Publishing Group, 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 442 (2006): 440-443, doi:10.1038/nature04950.Oceanic core complexes are massifs in which lower crustal and upper mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. A new survey of the Mid-Atlantic Ridge (MAR) near 13°N reveals a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. The new data document the topographic characteristics of actively-forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically-recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the MAR suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.This work was supported by the National Science Foundation

    Seismicity of the Atlantis Massif detachment fault, 30°N at the Mid-Atlantic Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AG11, doi:10.1029/2012GC004210.At the oceanic core complex that forms the Atlantis Massif at 30°N on the Mid-Atlantic Ridge, slip along the detachment fault for the last 1.5–2 Ma has brought lower crust and mantle rocks to the seafloor. Hydroacoustic data collected between 1999 and 2003 suggest that seismicity occurred near the top of the Massif, mostly on the southeastern section, while detected seismicity along the adjacent ridge axis was sparse. In 2005, five short-period ocean bottom seismographs (OBS) were deployed on and around the Massif as a pilot experiment to help constrain the distribution of seismicity in this region. Analysis of six months of OBS data indicates that, in contrast to the results of the earlier hydroacoustic study, the vast majority of the seismicity is located within the axial valley. During the OBS deployment, and within the array, seismicity was primarily composed of a relatively constant background rate and two large aftershock sequences that included 5 teleseismic events with magnitudes between 4.0 and 4.5. The aftershock sequences were located on the western side of the axial valley adjacent to the Atlantis Massif and close to the ridge-transform intersection. They follow Omori's law, and constitute more than half of the detected earthquakes. The OBS data also indicate a low but persistent level of seismicity associated with active faulting within the Atlantis Massif in the same region as the hydroacoustically detected seismicity. Within the Massif, the data indicate a north-south striking normal fault, and a left-lateral, strike-slip fault near a prominent, transform-parallel, north-facing scarp. Both features could be explained by changes in the stress field at the inside corner associated with weak coupling on the Atlantis transform. Alternatively, the normal faulting within the Massif might indicate deformation of the detachment surface as it rolls over to near horizontal from an initial dip of about 60° beneath the axis, and the strike-slip events may indicate transform-parallel movement on adjacent detachment surfaces.We thank the Deep Ocean Exploration Institute at WHOI, Director of Research at WHOI, WHOI’s Department of Geology and Geophysics, and the National Science Foundation for funding the data collection.2013-04-0

    Fault rotation and core complex formation : significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N)

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q03003, doi:10.1029/2007GC001699.The region of the Mid-Atlantic Ridge (MAR) between the Fifteen-Twenty and Marathon fracture zones displays the topographic characteristics of prevalent and vigorous tectonic extension. Normal faults show large amounts of rotation, dome-shaped corrugated detachment surfaces (core complexes) intersect the seafloor at the edge of the inner valley floor, and extinct core complexes cover the seafloor off-axis. We have identified 45 potential core complexes in this region whose locations are scattered everywhere along two segments (13° and 15°N segments). Steep outward-facing slopes suggest that the footwalls of many of the normal faults in these two segments have rotated by more than 30°. The rotation occurs very close to the ridge axis (as much as 20° within 5 km of the volcanic axis) and is complete by ∼1 My, producing distinctive linear ridges with roughly symmetrical slopes. This morphology is very different from linear abyssal hill faults formed at the 14°N magmatic segment, which display a smaller amount of rotation (typically <15°). We suggest that the severe rotation of faults is diagnostic of a region undergoing large amounts of tectonic extension on single faults. If faults are long-lived, a dome-shaped corrugated surface develops in front of the ridges and lower crustal and upper mantle rocks are exposed to form a core complex. A single ridge segment can have several active core complexes, some less than 25 km apart that are separated by swales. We present two models for multiple core complex formation: a continuous model in which a single detachment surface extends along axis to include all of the core complexes and swales, and a discontinuous model in which local detachment faults form the core complexes and magmatic spreading forms the intervening swales. Either model can explain the observed morphology.D. Smith and H. Schouten were supported in this work by NSF grant OCE-0649566. J. Escartın was supported by CNRS

    Prevalence of Microvascular and Macrovascular Disease in the Glycemia Reduction Approaches in Diabetes - A Comparative Effectiveness (GRADE) Study Cohort

    Get PDF
    Aims: The Glycemia Reduction Approaches in Diabetes - A Comparative Effectiveness (GRADE) trial is a randomized clinical trial comparing glycemic effects of four diabetes medications added to metformin in type 2 diabetes (T2D). Microvascular and macrovascular diseases are secondary outcomes. We evaluated the prevalence and risk factor relationships for microvascular and macrovascular complications in the GRADE cohort at study entry. Methods: Complication prevalence and risk factors were analyzed based on data from screening in all consenting participants meeting GRADE eligibility. Logistic regression and Z-statistics were used to assess risk factor relationships with complications. Results: We enrolled 5047 T2D participants [mean age 57 years; 36% female; mean known T2D duration 4 years (all < 10 years); mean HbA1c 8.0% (∼64 mmol/mol) at screening]. Urinary albumin/creatinine ratio (ACR) ≥ 30 mg/gram was present in 15.9% participants; peripheral neuropathy (by Michigan Neuropathy Screening Instrument) in 21.5%; cardiovascular autonomic neuropathy by electrocardiography-derived indices in 9.7%; self-reported retinopathy in 1.0%. Myocardial infarction ascertained by self-report or electrocardiogram was present in 7.3%, and self-reported history of stroke in 2.0%. Conclusions: In the GRADE cohort with < 10 years of T2D and a mean HbA1c of 8.0%, diabetes complications were present in a substantial fraction of participants, more so than might otherwise have been expected
    corecore